Skip to main content
Log in

The key role of mica during igneous concentration of tantalum

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Igneous rocks with high Ta concentrations share a number of similarities such as high Ta/Nb, low Ti, LREE and Zr concentrations and granitic compositions. These features can be traced through fractionated granitic series. Formation of Ta-rich melts begins with anatexis in the presence of residual biotite, followed by magmatic crystallization of biotite and muscovite. Crystallization of biotite and muscovite increases Ta/Nb and reduces the Ti content of the melt. Titanium-bearing oxides such as rutile and titanite are enriched in Ta and have the potential to deplete Ta at early stages of fractionation. However, mica crystallization suppresses their saturation and allows Ta to increase in the melt. Saturation with respect to Ta and Nb minerals occurs at the latest stages of magmatic crystallization, and columbite can originate from recrystallization of mica. We propose a model for prediction of intrusion fertility for Ta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan VI GB (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. J Petrol 51:785–821

  • Bartels A, Holtz F, Linnen RL (2010) Solubility of manganotantalite and manganocolumbite in pegmatitic melts. Am Mineral 95:537–544

    Article  Google Scholar 

  • Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165:197–213

    Article  Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Černý P, Goad BE, Hawthorne FC, Chapman R (1986) Fractionation trends of the Nb- and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am Mineral 71:501–517

    Google Scholar 

  • Černý P, London D, Novák M (2012) Granitic pegmatites as reflections of their sources. Elements 8:289–294

    Article  Google Scholar 

  • Chevychelov VY, Borodulin GP, Zaraisky GP (2010) Solubility of columbite, (Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650–850 °C and 30–400 MPa: an experimental investigation. Geochem Int 48:456–464. doi:10.1134/S0016702910050034

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517–543. doi:10.1180/0026461067050348

  • Cordeiro PFDO, Brod JA, Palmieri M, de Oliveira CG, Barbosa ESR, Santos RV, Gaspar JC, Assis LC (2011) The Catalão I niobium deposit, central Brazil: resources, geology and pyrochlore chemistry. Ore Geol Rev 41:112–121

  • Dostal J, Chatterjee AK (2000) Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem Geol 163:207–218. doi:10.1016/S0009-2541(99)00113-8

    Article  Google Scholar 

  • Fetherston JM (2004) Tantalum in Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 22, Perth, p 162

  • Fiege A, Kirchner C, Holtz F, Linnen RL, Dziony W (2011) Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts—an experimental study. Lithos 122:165–174. doi:10.1016/j.lithos.2010.12.012

  • Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645. doi:10.1093/petroj/40.11.1613

    Article  Google Scholar 

  • Galeschuk C, Vanstone P (2007) Exploration techniques for rare-element pegmatite in the Bird River greenstone belt, southeastern Manitoba. In: Proceedings of exploration 07: fifth decennial international conference on mineral exploration, pp 823–839

  • Gippsland (2013) Gippsland’s Abu Dabbab Tantalum-Tin-Feldspar Project Egypt. http://www.gippslandltd.com/Projects/AbuDabbab.aspx

  • Green TH, Pearson NJ (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta 51:55–62. doi:10.1016/0016-7037(87)90006-8

  • Guimarães HN, Weiss RA (2001) The complexity of the niobium deposits in the alkaline- ultramafic intrusions Catalão I and II—Brazil

  • Heinrich EW (1964) Tin-tantalum-lithium pegmatites of the Sao Joao Del Rei district, Minas Gerais, Brazil. Econ Geol 59:982–1002. doi:10.2113/gsecongeo.59.6.982

    Article  Google Scholar 

  • Issa Filho A, Riffel BF, Sousa CAF (2001) Some aspects of the mineralogy of CBMM niobium deposit and mining and pyrochlore ore processing—Araxá, MG—Brazil

  • Jochum K, Stolz A, McOrist G (2000) Niobium and tantalum in carbonaceous chondrites: constraints on the solar system and primitive mantle niobium/tantalum, zirconium/niobium, and niobium/uranium ratios. Meteorit Planet Sci 35:229–235

    Article  Google Scholar 

  • Klementová, M, Rieder M (2004) Exsolution in niobian rutile from the pegmatite deposit at Greenbushes, Australia. Can Mineral 42:1859–1870

    Article  Google Scholar 

  • Kostitsyn YA, Zarajskij GP, Aksyuk AM, Chevychelov VY (2004) Rb–Sr evidence for the genetic links between biotite and Li–F granites: an example of the Spokoinoe, Orlovka, and Etyka deposits, Eastern Transbaikalia. Geokhimiya 42:940–948

    Google Scholar 

  • Kovalenko VI, Tsaryeva GM, Naumov VB, Hervig RL, Newman S (1996) Magma of pegmatites from Volhynia: composition and crystallization parameters determined by magmatic inclusion studies. Petrology 4:277–290

  • Kuzmenko MV (1961) The geochemistry of tantalum and niobium. Int Geol Rev 3:9–25. doi:10.1080/00206816109474647

    Article  Google Scholar 

  • Lagache M, Quemeneur J (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. Can Mineral 35:153–165

    Google Scholar 

  • Lichtervelde M, Grégoire M, Linnen RL, Beziat D, Salvi S (2008) Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contrib Mineral Petrol 155:791–806

  • Linnen RL (1998) The solubility of Nb–Ta–Zr–Hf–W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites. Econ Geol 93:1013–1025. doi:10.2113/gsecongeo.93.7.1013

    Article  Google Scholar 

  • Linnen RL, Keppler H (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib Mineral Petrol 128:213–227

    Article  Google Scholar 

  • Linnen RL, Keppler H (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta 66:3293–3301. doi:10.1016/S0016-7037(02)00924-9

    Article  Google Scholar 

  • Linnen RL, Lichtervelde MV, Černý P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280. doi:10.2113/gselements.8.4.275

    Article  Google Scholar 

  • Linnen RL, Trueman DL, Burt R (2014) Tantalum and niobium. In: Gunn G (ed) Critical metals handbook. Wiley, Chicester, UK, pp 361–385

  • London D (2008) Pegmatites. Canadian Mineralogist Special Publication 10, The Mineralogical Association of Canada, Canada, p 347

  • Lynas (2011) Independent technical review Mt Weld Rare metals and phosphate resources. http://www.lynascorp.com/Announcements/2011/Forge_Clean_Final_280311_961365.pdf

  • Martins T, Roda-Robles E, Lima A, de Parseval P (2012) Geochemistry and evolution of micas in the Barroso–Alvão pegmatite field, Northern Portugal. Can Mineral 50:1117–1129. doi:10.3749/canmin.50.4.1117

    Article  Google Scholar 

  • Nash W, Crecraft H (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  Google Scholar 

  • Ogunleye PO, Ike EC, Garba I (2005) Geochemical characteristics of the niobium-rich arfvedsonite granites, Younger Granites province of Nigeria. Chem Erde 65:279–296. doi:10.1016/j.chemer.2003.10.003

    Article  Google Scholar 

  • Olin PH, Wolff JA (2012) Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos 128–131:46–54. doi:10.1016/j.lithos.2011.10.007

    Article  Google Scholar 

  • Papp JF (2011) Niobium (columbium) and Tantalum. Minerals Yearbook 2011. US Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/niobium/myb1-2011-niobi.xls

  • Partington GA (1990) Environment and structural controls on the intrusion of the giant rare metal Greenbushes pegmatite, Western Australia. Econ Geol 85:437–456

    Article  Google Scholar 

  • Partington GA, McNaughton NJ, Williams IS (1995) A review of the geology, mineralization, and geochronology of the Greenbushes pegmatite, Western Australia. Econ Geol 90:616–635

    Article  Google Scholar 

  • Pohl WL (2011) Economic Geology: Principles and Practice. Wiley, Chicester, UK, p 680

    Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69:695–709. doi:10.1016/j.gca.2004.06.037

    Article  Google Scholar 

  • Raimbault L, Burnol L (1998) The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites. Can Mineral 36:265–282

    Google Scholar 

  • Raimbault L, Cuney M, Azencott C, Duthou J-L, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576. doi:10.2113/gsecongeo.90.3.548

  • Rudnick R, Barth M, Horn I, McDonough W (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287:278–281

    Article  Google Scholar 

  • Schmitt AK, Trumbull RB, Dulski P, Emmermann R (2002) Zr–Nb-REE Mineralization in peralkaline granites from the amis complex, brandberg (namibia): evidence for magmatic pre-enrichment from melt inclusions. Econ Geol 97:399–413. doi:10.2113/gsecongeo.97.2.399

    Article  Google Scholar 

  • Schwela U (2010) The state of tantalum mining. Min J p 11

  • Severov EA, Zalashkova NY, Sarin LP, Smirnov IA (1977) A new type of tantalum-bearing apogranite. Int Geol Rev 19:507–510. doi:10.1080/00206817709471046

    Article  Google Scholar 

  • Smirnov SZ, Thomas VG, Kamenetsky VS, Kozmenko OA, Large RR (2012) Hydrosilicate liquids in the system Na2O–SiO2–H2O with NaF, NaCl and Ta: evaluation of their role in ore and mineral formation at high T and P. Petrology 20:271–285

  • Sokolova EN, Smirnov SZ, Astrelina EI, Annikova IY, Vladimirov AG, Kotler PD (2011) Ongonite-elvan magmas of the Kalguty ore-magmatic system (Gorny Altai): composition, fluid regime, and genesis. Russ Geol Geophys 52:1378–1400

  • Stepanov AS, Hermann J (2013) Fractionation of Nb and Ta by biotite and phengite: implications for the “missing Nb paradox”. Geology 41:303–306. doi:10.1130/G33781.1

    Article  Google Scholar 

  • Stepanov AS, Hermann J, Rubatto D, Rapp RP (2012) Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chem Geol 300–301:200–220. doi:10.1016/j.chemgeo.2012.01.007

    Article  Google Scholar 

  • Stilling A, Ćerný P, Vanstone PJ (2006) The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. Can Mineral 44:599–623. doi:10.2113/gscanmin.44.3.599

  • Sweetapple MT, Collins PLF (2002) Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara craton, Western Australia. Econ Geol 97:873–895. doi:10.2113/97.4.873

    Article  Google Scholar 

  • Tartèse R, Boulvais P (2010) Differentiation of peraluminous leucogranites “en route” to the surface. Lithos 114:353–368. doi:10.1016/j.lithos.2009.09.011

    Article  Google Scholar 

  • Thomas R, Davidson P, Beurlen H (2011) Tantalite-(Mn) from the Borborema Pegmatite Province, northeastern Brazil: conditions of formation and melt- and fluid-inclusion constraints on experimental studies. Mineralium Deposita 46:749–759. doi:10.1007/s00126-011-0344-9

    Article  Google Scholar 

  • Thomas R, Davidson P, Beurlen H (2012) The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Miner Petrol 106:55–73. doi:10.1007/s00710-012-0212-z

    Article  Google Scholar 

  • Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal–chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201. doi:10.1016/S0012-821X(00)00004-2

  • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71

  • Van Lichtervelde M, Salvi S, Beziat D, Linnen RL (2007) Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco Lower pegmatite, Manitoba, Canada. Econ Geol 102:257–276. doi:10.2113/gsecongeo.102.2.257

    Article  Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276. doi:10.1007/BF00375178

    Article  Google Scholar 

  • Vielzeuf D, Montel J (1994) Partial melting of metagrey wackes. 1. Fluid-absent experiments and phase-relationships. Contrib Mineral Petrol 117:375–393

    Article  Google Scholar 

  • Xiong X, Keppler H, Audetat A, Ni H, Sun W, Li Y (2011) Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochim Cosmochim Acta 75:1673–1692. doi:10.1016/j.gca.2010.06.039

  • Yin Lin, Pollard PJ, Shouxi H, Taylor RG (1995) Geologic and geochemical characteristics of the Yichun Ta–Nb–Li deposit, Jiangxi Province, south China. Econ Geol 90:577–585

    Article  Google Scholar 

  • Zaraisky GP, Aksyuk AM, Devyatova VN, Udoratina OV, Chevychelov VY (2009) The Zr/Hf ratio as a fractionation indicator of rare-metal granites. Petrology 17:25–45. doi:10.1134/S0869591109010020

  • Zhang AC, Wang RC, Hu H, Hu H, Zhang H, Zhu JC, Chen XM (2004) Chemical evolution of Nb–Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China. Mineral Mag 68:739–756. doi:10.1180/0026461046850216

Download references

Acknowledgments

We thank D. H. Green, I. C. Campbell, M. T. Sweetapple, J. A. Halpin, D. R. Cooke, S. Z. Smirnov, V. Kamenetsky and reviewers by R. Linnen and A. Hack for constructive comments that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Stepanov.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, A., A. Mavrogenes, J., Meffre, S. et al. The key role of mica during igneous concentration of tantalum. Contrib Mineral Petrol 167, 1009 (2014). https://doi.org/10.1007/s00410-014-1009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1009-3

Keywords

Navigation