Skip to main content
Log in

Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mafic basaltic-andesitic volcanic rocks from the Andean Southern Volcanic Zone (SVZ) exhibit a northward increase in crustal components in primitive arc magmas from the Central through the Transitional and Northern SVZ segments. New elemental and Sr–Nd-high-precision Pb isotope data from the Quaternary arc volcanic centres of Maipo (NSVZ) and Infernillo and Laguna del Maule (TSVZ) are argued to reflect mainly their mantle source and its melting. For the C-T-NSVZ, we identify two types of source enrichment: one, represented by Antuco in CSVZ, but also present northward along the arc, was dominated by fluids which enriched a pre-metasomatic South Atlantic depleted MORB mantle type asthenosphere. The second enrichment was by melts having the characteristics of upper continental crust (UCC), distinctly different from Chile trench sediments. We suggest that granitic rocks entered the source mantle by means of subduction erosion in response to the northward increasingly strong coupling of the converging plates. Both types of enrichment had the same Pb isotope composition in the TSVZ with no significant component derived from the subducting oceanic crust. Pb–Sr–Nd isotopes indicate a major crustal compositional change at the southern end of the NSVZ. Modelling suggests addition of around 2 % UCC for Infernillo and 5 % for Maipo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson M, Alvarado P, Zandt G, Beck S (2007) Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys J Int 171:419–434

    Article  Google Scholar 

  • Arevalo R, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85

    Article  Google Scholar 

  • Bach W, Hegner E, Erzinger J, Satir M (1996) Chemical and isotopic variations along the superfast spreading east Pacific Rise from 6 degree to 30 degree S. Earth Planet Sci Lett 142:223–240

    Article  Google Scholar 

  • Baker J, Peate D, Waight T, Meyzen C (2004) Pb isotopic analysis of standards and samples using a 207Pb–204Pb and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem Geol 211:275–303

    Article  Google Scholar 

  • Brandon AD, Draper DS (1996) Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim Cosmochim Acta 60:1739–1749

    Article  Google Scholar 

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of Chilean Andes: a review. Tectonophysics 471:96–113

    Article  Google Scholar 

  • Charrier R (1979) Los Volcanes Andrés y Don Casimiro: Dos Centros Descubiertos en los Andes entre 34° y 35° 45′ sur. Rev Geol Chile 8:79–85

    Google Scholar 

  • Charrier R (1981) Geology of the main Cordillera of Chile between 34° and 34° 30′S and their tectonic, magmatic and paleogeographic evolution. Berl Geowiss Abh 36:1–270

    Google Scholar 

  • Davidson JP, Ferguson KM, Coluccim T, Dungan MA (1988) The origin and evolution of magmas from the San Pedro-Pellado Volcanic Complex, S. Chile: multicomponent sources and open system evolution. Contrib Mineral Petrol 100:429–445

    Article  Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

  • DePaolo D (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Deruelle B (1982) Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. J Volcanol Geoth Res 14:77–124

    Article  Google Scholar 

  • Douglass J, Schilling J-G, Fontignie D (1999) Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern mid-Atlantic ridge (40–55°S). J Geophys Res 104(B2):2941–2962

    Article  Google Scholar 

  • Dungan MA, Wulff A, Thompson R (2001) Eruptive stratigraphy of the Tatara-San Pedro Complex, 36°S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42:555–626

    Article  Google Scholar 

  • Dyhr CT, Holm PM, Llambías EJ (2013) Geochemical constraints on the relationship between the Miocene-Pliocene volcanism and tectonics in the Palaoco and Fortunoso volcanic fields, Mendoza Region, Argentina: new insights from 40Ar/39Ar dating, Sr–Nd–Pb isotopes and trace elements. J Volcanol Geoth Res 266:50–68

    Article  Google Scholar 

  • Feeley TC, Dungan MA, Frey FA (1998) Geochemical constraints on the origin of mafic and silicic magmas at Cordon el Guadal, Tatara-San Pedro Complex, Central Chile. Contrib Mineral Petrol 131:393–411

    Article  Google Scholar 

  • Folguera A, Ramos VA, Hermanns RL, Naranjo JL (2004) Neotectonics in the foothills of the Southernmost Central Andes (37–38°S). Evidence for the strike-slip displacement along the Antiñir-Copahue Fault Zone. Tectonics 23:TC5008. doi:10.1029/2003TC001533

    Article  Google Scholar 

  • Frey FA, Gerlach DC, Hickey RL, López-Escobar L, Munizaga-Villavicencio F (1984) Petrogenesis of the Laguna del Maule volcanic complex, Chile (36°S). Contrib Mineral Petrol 88:133–149

    Article  Google Scholar 

  • Futa K, Stern CR (1988) Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes. Earth Planet Sci Lett 88:253–262

    Article  Google Scholar 

  • Giambiagi L, Bechis F, García V, Clark AH (2008) Temporal and spatial relationships of thick- and thin-skinned deformation: a case study from the Malargüe fold-and-thrust belt, southern Central Andes. Tectonophysics 459:123–139

    Article  Google Scholar 

  • Gos AR, Kay SM, Mpodozis C (2013) Andean adakite-like high-Mg andesites on the Northern Margin of the Chilean-Pampean Flat-slab (27–28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J Petrol 54:2193–2234

    Article  Google Scholar 

  • Grevemeyer I, Ranero CR, Flueh ER, Klächen D, Biala J (2007) Passive and seismological study of bending-related faulting and mantle serpentinization at the Middle American trench. Earth Planet Sci Lett 258:528–542

    Article  Google Scholar 

  • Grunder AL, Mahood GA (1988) Physical and chemical models of zoned silicic magmas: the Loma Seca Tuff and Calabozos caldera, southern Andes. J Petrol 29:831–867

    Article  Google Scholar 

  • Gudnason J, Holm PM, Søager N, Llambías EJ (2012) Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza, Argentina. J S Am Earth Sci 37:191–201

    Article  Google Scholar 

  • Haase KM (2002) Geochemical constraints on magma sources and mixing processes in Easter Microplate MORB (SE Pacific); a case study of plume–ridge interaction. Chem Geol 182:335–355

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817. doi:10.1038/nature05191

    Article  Google Scholar 

  • Hawkesworth CJ, Hergt JM, Ellam RM, McDermott F (1997) Element fluxes associated with subduction related magmatism. Philos Trans Phys Sci Eng 335:393–405

    Article  Google Scholar 

  • Hickey RL, Gerlach DC, Frey FA (1984) Geochemical variations in the volcanic rocks from central-south Chile (33–42oS. In: Harmon RS, Barreiro BA (eds.) Andean magmatism: chemical and isotopic constraints. Shiva Publications, Cheshire, England, pp 72–95

  • Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophys Res 91:5963–5983

    Article  Google Scholar 

  • Hickey-Vargas R, Roa HM, López-Escobar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Mineral Petrol 103:361–386

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Continental influence on arc magmatism in central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hildreth W, Fierstein J, Godoy E, Drake RE, Singer BS (1999) The puelchi volcanic field: extensive pleistocene rhyolite lava flows in the Andes of central Chile. Rev Geol Chile 26:275–309

    Article  Google Scholar 

  • Hildreth W, Godoy E, Fierstein J, Singer B (2010) Laguna del Maule volcanic field: eruptive history of a quaternary basalt-to-rhyolite distributed volcanic field on the Andean rangecrest in Central Chile. Servicio Nacional Geol Menría Chile Boletin 63

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548. doi:10.1139/e71-055

    Article  Google Scholar 

  • Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schönberg D, van den Bogaard P, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0°S): constraints on mantle wedge and slab input compositions. Geochim Cosmochim Acta 123:218–243

    Article  Google Scholar 

  • Jochum KP, Hofmann AW, Seufert HM (1993) Tin in mantle-derived rocks: constraints on Earth evolution. Geochim Cosmochim Acta 57:3585–3589

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J S Am Earth Sci 15:39–57

    Article  Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic migration, crustal thickening, subduction erosion, and magmatism in south-central Andes. Geol Soc Am Bull 117:67–88

    Article  Google Scholar 

  • Kay SM, Burns WM, Copeland P, Mancilla O (2006) Upper Cretaceous to Holocene magmatism and evidence for transient Miocene shallowing of the Andean subduction zone under the northern Neuquén Basin. Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat). Geol Soc Am 407:19–60

    Google Scholar 

  • Kendrick E, Bevis M, Smalley R Jr, Brooks B, Barriga Vargas R, Lauría E, Fortes LPS (2003) The Nazca-South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205

    Article  Google Scholar 

  • Kukowski N, Oncken O (2006) Subduction erosion—the ‘Normal’ mode of fore-arc material transfer along the Chilean margin? In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos V, Strecker M, Wigger P (eds) The Andes—active subduction orogeny, (frontiers in Earth sciences). Springer, Berlin, pp 217–236

    Google Scholar 

  • le Roux PJ, le Roex AP, Schilling J-G, Shimizu N, Perkins WW, Pearce NJG (2001) Mantle heterogeneity beneath the southern mid-Atlantic ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet Sci Lett 203:479–498

    Article  Google Scholar 

  • le Roux PJ, le Roex AP, Schilling J-G (2002) Morb melting processes beneath the southern mid-Atlantic ridge (40–55°S): a role for pyroxenite and residual garnet. Contrib Mineral Petrol 144:206–229

    Article  Google Scholar 

  • Lee C-TA, Leeman WP, Canil D, Li Z-XA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks. A classification and glossary of terms; recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd edn. Cambridge University Press, New York

  • Litvak V, Spagnuolo MG, Folguera A, Ramos VA (2010) Evolution of middle to late Miocene arc-related magmatism between 35° and 38°S, Southern Central Andes, Argentina. AGU Meeting of the Americas, Foz do Iguacu

    Google Scholar 

  • Llambías EJ, Bertotto GW, Risso C, Hernando I (2010) El volcanismo cuarternario en el retroarco de Payenia: una revision. Rev Asoc Geol Argentina 67:278–300

    Google Scholar 

  • López-Escobar L, Frey FA, Vergara MM (1977) Andesites and high-alumina basalts from the central-south Chile high Andes: geochemical evidence bearing on their petrogenesis. Contrib Mineral Petrol 63:199–228

    Article  Google Scholar 

  • López-Escobar L, Vergara MM, Frey FA (1981) Petrology and geochemistry of lavas from Antuco volcano, a basaltic volcano of the southern Andes (37°25′S). J Volcanol Geoth Res 11:329–352

    Article  Google Scholar 

  • López-Escobar L, Moreno-Roa H, Tagiri M, Notsu K, Onuma N (1985) Geochemistry of lavas from San José volcano, southern Andes 33°45′S. Geochem J 19:209–222

    Article  Google Scholar 

  • López-Escobar L, Parada MA, Hickey-Vargas R, Frey FA, Kempton PD, Moreno-Roa H (1995) Calbuco volcano and minor eruptive centers distributed along the Liquiñe-Ofqui fault zone, Chile (41°–42°S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contrib Mineral Petrol 119:345–361

    Article  Google Scholar 

  • Lucassen F, Trumbull R, Franz G, Creixell C, Vásquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to recent compositional evolution of the Chilean Pacific margin (36–41°S). J S Am Earth Sci 17:103–119

    Article  Google Scholar 

  • Lucassen F, Wiedicke M, Franz G (2010) Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°–40°S). Int J Earth Sci 99:687–701

    Article  Google Scholar 

  • MacDougall JD, Lugmair GW (1985) Extreme isotopic homogeneity among basalts from the southern East Pacific Rise: mantle or mixing effect? Nature 313:209–211

    Article  Google Scholar 

  • MacFarlane AW (1999) Isotopic studies of northern Andean crustal evolution and ore metal sources. In: Skinner BJ (ed) Geology and revisited: geologic and geochronologic framework. International Geological Review, vol 39, pp 22–54

  • Marchetti D, Cerling T, Evenson E, Gosse KJ, Martinez O (2006) Cosmogenic exposure ages of lava flows that temporarily dammed the Río Grande and Río Salado, Mendoza Province, Argentina. Backbone of the Americas. Patagonia to Alaska. Abstracts with programs, vol 5e39. Geological Society of America—Asociación Geológica Argentina, Mendoza

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamic constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • Middlemost EAK (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77:19–26

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  • Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344:31–36

    Article  Google Scholar 

  • Naranjo JA, Lara LE, Mazzon MM (1999) Late Quaternary monogenetic volcanoes along Río Salado, Southwest Mendoza Province, Argentina Volcanes monogénicos del Cuaternario Tardío a lo largo del Río Salado, sudoeste de la provincia de Mendoza, Argentina. Acta Geol Hisp 32:113–122

    Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schermann K (2006) Deformation of the central Andean upper plate system—facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos V, Strecker M, Wigger P (eds) The Andes—active subduction orogeny, (frontiers in Earth sciences). Springer, Berlin, pp 3–27

    Google Scholar 

  • Pardo M, Comte D, Monfret T (2002) Seismotectonic and stress distribution in the central Chile subduction zone. J S Am Earth Sci 15:11–22

    Article  Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944

  • Plank T, Langmuir C (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    Article  Google Scholar 

  • Ramos VA (2010) The Grenville-age basement of the Andes. J S Am Earth Sci 29:77–91

    Article  Google Scholar 

  • Ramos VA, Zapata T, Cristallini EO, Introcaso A (2004) The Andes thrust system—latitudinal variations in structural styles and orogenic shortening. In: McClay KR (ed) Thrust tectonics and petroleum systems. American Association of Petroleum Geologists vol 82, pp 30–50

  • Rodriguez C, Sellés D, Duncan M, Langmuir C, Leeman W (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví Volcano (36.2°S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48:2033–2061

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry: the crust, vol 3. Elsevier, Oxford, pp 1–64

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:5. doi:10.1029/2003GC000597

    Article  Google Scholar 

  • Scholl DW, von Huene R (2007) Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collision) and collision (suturing) orogens. Geol Soc Lond Spec Publ 318:105–125

  • Selles D, Rodriguez AC, Duncan M, Naranjo JA, Gardeweg M (2004) Geochemistry of Nevado de Longaví Volcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Rev Geol Chile 31:293–315

    Article  Google Scholar 

  • Sigmarsson O, Condomines M, Morris JD, Harmon RS (1990) Uranium and 10Be enrichments by fluids in Andean arc magmas. Nature 346:163–165

    Article  Google Scholar 

  • Sigmarsson O, Chmeleff J, Morris J, López-Escobar L (2002) Origin of 226Ra/230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth Planet Sci Lett 196:189–196

    Article  Google Scholar 

  • Søager N, Holm PM (2013) Melt-peridotite reactions in upwelling eclogite bodies: constraints from EM1-type alkaline basalts in Payenia, Argentina. Chem Geol 360–361:204–219

    Article  Google Scholar 

  • Søager N, Holm PM, Llambías EJ (2013) Payenia volcanic province, southern Mendoza, Argentina: OIB mantle upwelling in a backarc environment. Chem Geol 349–350:36–53

    Article  Google Scholar 

  • Somoza R, Zaffarana C (2008) Mid-Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera. Earth Planet Sci Lett 271:267–277

    Article  Google Scholar 

  • Sruoga P, Llambías EJ, Fauque L, Schonwandt D, Repol DG (2005) Volcanological and geochemical evolution of the Diamante Caldera-Maipo volcano complex in the southern Andes of Argentina (34°10′S). J S Am Earth Sci 19:399–414

    Article  Google Scholar 

  • Stern CR (1991) Role of subduction erosion in the generation of the Andean magmas. Geology 19:78–81

    Article  Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:161–206

    Article  Google Scholar 

  • Stern CR (2011) Subduction erosion: rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust. Gondwana Res 20:284–308

    Article  Google Scholar 

  • Stern CR, Skewes MA (1995) Miocene to present magmatic evolution at the northern end of the Andean Southern Volcanic Zone, Central Chile. Rev Geol Chile 22:261–272

    Google Scholar 

  • Stern CR, Amini H, Charrier R, Godoy E, Hervé F, Varela J (1984) Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the río Maipo and río Cachapoal (Chile) and the río Yaucha and río Papagayos (Argentina). Rev Geol Chile 23:39–52

    Google Scholar 

  • Stern CR, Moreno H, López-Escobar L, Clavero JE, Lara LE, Naranjo JA, Parada MA, Skewes MA (2007) Chilean volcanoes. In: Moreno T, Gibbons W (Eds) The geology of Chile. The Geological Society, London Press, chapter 5, pp 149–180

  • Stern CR, Floody R, Espiñeíra D (2011) Olivine-hornblende-lamprophyre dikes from Quebrada los Sapos, El Teniente, Central Chile (34°S): implications for the temporal geochemical evolution of the Andean subarc mantle. Andean Geol 38:1–22

    Google Scholar 

  • Stracke A (2012) Earth’s heterogeneous mantle: a product of convection–driven interaction between crust and mantle. Chem Geol 330–331:274–299

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Tassara A, Yañez G (2003) Relationship between elastic thickness and the tectonic segmentation of the Andean margin. Rev Geol Chile 30:159–186

    Article  Google Scholar 

  • Tassara A, Götze H-J, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111:B09404. doi:10.1029/2005JB003976

    Google Scholar 

  • Thirlwall MF (2000) Inter-laboratory and other errors in Pb isotope analyses investigated using a 207Pb–204Pb double spike. Chem Geol 163:299–322

    Article  Google Scholar 

  • Tormey DR, Hickey-Vargas R, Frey FA, López-Escobar L (1991) Recent lavas from the Andean volcanic front (33 to 42°S); interpretations of along-arc compositional variations. Geol Soc Am 265:57–77

    Google Scholar 

  • Tormey DR, Frey FA, López-Escobar L (1995) Geochemistry of the active Azufre-Planchon-Peteroa Volcanic Complex, Chile (35°15′S): evidence for multiple sources and processes in a Cordilleran Arc Magmatic System. J Petrol 36:265–298

    Article  Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile Trench off Central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny, frontiers in Earth sciences. Springer, Berlin, pp 193–236

    Google Scholar 

  • Völker D, Ktterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33°S and 46°S. J Volcanol Geoth Res 205:114–129

    Article  Google Scholar 

  • White WM (1993) 238U/204Pb in MORB and open system evolution of the depleted mantle. Earth Planet Sci Lett 115:211–226

    Article  Google Scholar 

  • Willbold M, Stracke A (2010) Formation of enriched mantle components by recycling of upper and lower continental crust. Chem Geol 276:188–197

    Article  Google Scholar 

  • Yañez G, Cembrano J, Pardo M, Ranero C, Selles D (2002) The Challenger–Juan Fernández–Maipo major tectonic transition of the Nazca–Andean subduction system at 33–34°S: geodynamic evidence and implications. J S Am Earth Sci 15:23–38

    Article  Google Scholar 

Download references

Acknowledgments

We enjoyed the company in the field and discussions of earlier versions of the manuscript with Mads Alfastsen, Frederik E. Brandt, Erik V. Sørensen and Helene H. Jørgensen. Anne C. K. Pedersen and Matthijs Smit are thanked for help with the microprobe analyses. Jørgen Kystol, GEUS, is acknowledged for ICP-MS analyses. We are grateful for the constructive comments of the two reviewers, Suzanne Mahlburg Kay and Charles Stern. This work was supported by the Carlsberg Foundation Grant No. 2010_01_0833 and the Danish Council for Independent Research/Natural Sciences Grant No. 0602-01304B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Martin Holm.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holm, P.M., Søager, N., Dyhr, C.T. et al. Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust. Contrib Mineral Petrol 167, 1004 (2014). https://doi.org/10.1007/s00410-014-1004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1004-8

Keywords

Navigation