Skip to main content
Log in

Abnormal white matter within brain structural networks is associated with high-impulse behaviour in codeine-containing cough syrup dependent users

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Codeine-containing cough syrup (CCS) is considered as one of the most popular drug of dependence among adolescents because of its inexpensiveness and easy availability. However, its relationship with neurobiological effects remains sparsely explored. Herein, we examined how high-impulse behaviours relate to changes in the brain structural networks. Forty codeine-containing cough syrup dependent (CCSD) users and age-, gender-, and number of cigarettes smoked per day -matched forty healthy control (HC) subjects underwent structural brain imaging via MRI. High-impulse behaviour was assessed using the 30-item self-rated Barratt Impulsiveness Scale (BIS-11), and structural networks were constructed using diffusion tensor imaging and AAL-90 template. Between-group topological metrics were compared using nonparametric permutations. Benjamin–Hochberg false discovery rate correction was used to correct for multiple comparisons (P < 0.05). The relationships between abnormal network metrics and clinical characteristics of CCS dependent (BIS-11 total score, CCS- dependent duration and mean dose) were examined by Spearman’s correlation. Structural networks of the CCSD group demonstrated lower small-world properties than those of the HC group. Abnormal changes in nodal properties among CCSD users were located mainly in the frontal gyrus, inferior parietal lobe and olfactory cortex. NBS analysis further indicated disrupted structural connections between the frontal gyrus and multiple brain regions. There were significant correlations between abnormal nodal properties of the frontal gyrus and clinical characteristics (BIS-11 total score, CCS dependent duration and mean dose) in the CCSD group. These findings suggest that the high-impulse behavioural expression in CCS addiction is associated with widespread brain regions, particularly within those in the frontal cortex. Aberrant brain regions and disrupted connectivity of structural network may be the bases of neuropathology for underlying symptoms of high-impulse behaviours in CCSD users, which may provide a novel sight to better treat and prevent codeine dependency in adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCS:

Codeine-containing cough syrup

CCSD users:

Codeine-containing cough syrup dependent

HC:

Healthy control

HCs:

Healthy control subjects

WM:

White matter

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

FN:

Streamline number

References

  1. Lo MY, Ong MW, Lin JG, Sun WZ (2015) Codeine consumption from over-the-counter anti-cough syrup in Taiwan: a useful indicator for opioid abuse. Acta Anaesthesiol Taiwan 53(4):135–138. https://doi.org/10.1016/j.aat.2015.10.001

    Article  PubMed  Google Scholar 

  2. Van Hout MC, Norman I (2016) Misuse of non-prescription codeine containing products: recommendations for detection and reduction of risk in community pharmacies. Int J Drug Policy 27:17–22. https://doi.org/10.1016/j.drugpo.2015.09.007

    Article  PubMed  Google Scholar 

  3. Tay EMY, Roberts DM. https://doi.org/10.1080/17512433.2018.1537122

    Article  CAS  PubMed  Google Scholar 

  4. Carlson RG, Nahhas RW, Martins SS, Daniulaityte R (2016) Predictors of transition to heroin use among initially non-opioid dependent illicit pharmaceutical opioid users: a natural history study. Drug Alcohol Depend 160(37):127–134. https://doi.org/10.1016/j.drugalcdep.2015.12.026

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li Q, Liu J, Wang W, Wang Y, Li W, Chen J, Zhu J, Yan X, Li Y, Li Z, Ye J, Wang W (2018) Disrupted coupling of large-scale networks is associated with relapse behaviour in heroin-dependent men. J Psychiatry Neurosci 43(1):48–57

    Article  Google Scholar 

  6. Qiu YW, Jiang GH, Ma XF, Su HH, Lv XF, Zhuo FZ (2017) Aberrant interhemispheric functional and structural connectivity in heroin-dependent individuals. Addict Biol 22(4):1057–1067. https://doi.org/10.1111/adb.12387

    Article  CAS  PubMed  Google Scholar 

  7. Wu Q, Yu J, Yang C, Chen J, Yang L, Zhang H, Teng S, Li J, Yan D, Cao J, Zhao Y, Wang Z (2016) Nonmedical use of cough syrup among secondary vocational school students: a National Survey in China. Medicine (Baltimore) 95(10):e2969–105. https://doi.org/10.1097/MD.0000000000002969

    Article  Google Scholar 

  8. Qiu YW, Jiang GH, Su HH, Lv XF, Ma XF, Tian JZ, Zhuo FZ (2016) Short-term UROD treatment on cerebral function in codeine-containing cough syrups dependent male individuals. Eur Radiol 26(9):2964–2973. https://doi.org/10.1007/s00330-015-4139-8

    Article  PubMed  Google Scholar 

  9. Hua K, Wang T, Li C, Li S, Ma X, Li C, Li M, Fu S, Yin Y, Wu Y, Liu M, Yu K, Fang J, Wang P, Jiang G (2018) Abnormal degree centrality in chronic users of codeine-containing cough syrups: a resting-state functional magnetic resonance imaging study. Neuroimage Clin 19:775–781. https://doi.org/10.1016/j.nicl.2018.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li M, Hua K, Li S, Li C, Zhan W, Wen H, Ma X, Tian J, Jiang G (2019) Cortical morphology of chronic users of codeine-containing cough syrups: association with sulcal depth, gyrification, and cortical thickness. Eur Radiol. https://doi.org/10.1007/s00330-019-06165-0

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu F, Zhuo C, Yu C (2016) Altered cerebral blood flow covariance network in schizophrenia. Front Neurosci 10:308. https://doi.org/10.3389/fnins.2016.00308

    Article  PubMed  PubMed Central  Google Scholar 

  12. Qiu YW, Su HH, Lv XF, Jiang GH (2015) Abnormal white matter integrity in chronic users of codeine-containing cough syrups: a tract-based spatial statistics study. AJNR Am J Neuroradiol 36(1):50–56. https://doi.org/10.3174/ajnr.A4070

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grant JE, Chamberlain SR (2014) Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence? Addict Behav 39(11):1632–1639. https://doi.org/10.1016/j.addbeh.2014.04.022

    Article  PubMed  Google Scholar 

  14. Broos N, van Mourik Y, Schetters D, De Vries TJ, Pattij T (2017) Dissociable effects of cocaine and yohimbine on impulsive action and relapse to cocaine seeking. Psychopharmacology 234(22):3343–3351. https://doi.org/10.1007/s00213-017-4711-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguez-Cintas L, Daigre C, Grau-Lopez L, Barral C, Perez-Pazos J, Voltes N, Braquehais MD, Casas M, Roncero C (2016) Impulsivity and addiction severity in cocaine and opioid dependent patients. Addict Behav 58:104–109. https://doi.org/10.1016/j.addbeh.2016.02.029

    Article  PubMed  Google Scholar 

  16. Hobkirk AL, Bell RP, Utevsky AV, Huettel S, Meade CS (2019) Reward and executive control network resting-state functional connectivity is associated with impulsivity during reward-based decision making for cocaine users. Drug Alcohol Depend 194:32–39. https://doi.org/10.1016/j.drugalcdep.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  17. Yao S, Yang H, Zhu X, Auerbach RP, Abela JR, Pulleyblank RW, Tong X (2007) An examination of the psychometric properties of the Chinese version of the Barratt Impulsiveness Scale, 11th version in a sample of Chinese adolescents. Percept Mot Skills 104(3 Pt 2):1169–1182. https://doi.org/10.2466/pms.104.4.1169-1182

    Article  PubMed  Google Scholar 

  18. Cui Z, Zhong S, Xu P, He Y, Gong G (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42. https://doi.org/10.3389/fnhum.2013.00042

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  20. Chen Z, Liu M, Gross DW, Beaulieu C (2013) Graph theoretical analysis of developmental patterns of the white matter network. Front Hum Neurosci 7:716. https://doi.org/10.3389/fnhum.2013.00716

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shu N, Wang X, Bi Q, Zhao T, Han Y (2018) Disrupted topologic efficiency of white matter structural connectome in individuals with subjective cognitive decline. Radiology 286(1):229–238. https://doi.org/10.1148/radiol.2017162696

    Article  PubMed  Google Scholar 

  22. Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci 9:386. https://doi.org/10.3389/fnhum.2015.00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu Y, Liu M, Zeng S, Ma X, Yan J, Lin C, Xu G, Li G, Yin Y, Fu S, Hua K, Li C, Wang T, Li C, Jiang G (2018) Abnormal topology of the structural connectome in the limbic cortico-basal-ganglia circuit and default-mode network among primary insomnia patients. Front Neurosci 12:860. https://doi.org/10.3389/fnins.2018.00860

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  25. Zhang R, Jiang G, Tian J, Qiu Y, Wen X, Zalesky A, Li M, Ma X, Wang J, Li S, Wang T, Li C, Huang R (2016) Abnormal white matter structural networks characterize heroin-dependent individuals: a network analysis. Addict Biol 21(3):667–678. https://doi.org/10.1111/adb.12234

    Article  CAS  PubMed  Google Scholar 

  26. Liu F, Wang Y, Li M, Wang W, Li R, Zhang Z, Lu G, Chen H (2017) Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure. Hum Brain Mapp 38(2):957–973. https://doi.org/10.1002/hbm.23430

    Article  PubMed  Google Scholar 

  27. Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world' networks. Nature 393(6684):440–442. https://doi.org/10.1038/30918

    Article  CAS  PubMed  Google Scholar 

  28. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  Google Scholar 

  29. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc (Methodol) 57(1):289–300

    Google Scholar 

  30. Milella MS, Fotros A, Gravel P, Casey KF, Larcher K, Verhaeghe JA, Cox SM, Reader AJ, Dagher A, Benkelfat C, Leyton M (2016) Cocaine cue-induced dopamine release in the human prefrontal cortex. J Psychiatry Neurosci 41(5):322–330. https://doi.org/10.1503/jpn.150207

    Article  PubMed  PubMed Central  Google Scholar 

  31. Koob GF (2006) The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101(Suppl 1):23–30. https://doi.org/10.1111/j.1360-0443.2006.01586.x

    Article  PubMed  Google Scholar 

  32. Baler RD, Volkow ND (2006) Drug addiction: the neurobiology of disrupted self-control. Trends Mol Med 12(12):559–566. https://doi.org/10.1016/j.molmed.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  33. Otis JM, Namboodiri VM, Matan AM, Voets ES, Mohorn EP, Kosyk O, McHenry JA, Robinson JE, Resendez SL, Rossi MA, Stuber GD (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543(7643):103–107. https://doi.org/10.1038/nature21376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Zhu J, Li Q, Li W, Wu N, Zheng Y, Chang H, Chen J, Wang W (2013) Altered fronto-striatal and fronto-cerebellar circuits in heroin-dependent individuals: a resting-state FMRI study. PLoS ONE ONE 8(3):e58098. https://doi.org/10.1371/journal.pone.0058098

    Article  CAS  Google Scholar 

  35. Sinha R (2013) The clinical neurobiology of drug craving. Curr Opin Neurobiol 23(4):649–654. https://doi.org/10.1016/j.conb.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garavan H (2010) Insula and drug cravings. Brain Struct Funct 214(5–6):593–601. https://doi.org/10.1007/s00429-010-0259-8

    Article  PubMed  Google Scholar 

  37. Li X, Chen L, Ma R, Wang H, Wan L, Wang Y, Bu J, Hong W, Lv W, Vollstadt-Klein S, Yang Y, Zhang X (2019) The top-down regulation from the prefrontal cortex to insula via hypnotic aversion suggestions reduces smoking craving. Hum Brain Mapp 40(6):1718–1728. https://doi.org/10.1002/hbm.24483

    Article  PubMed  Google Scholar 

  38. Costumero V, Rosell-Negre P, Bustamante JC, Fuentes-Claramonte P, Llopis JJ, Avila C, Barros-Loscertales A (2018) Left frontoparietal network activity is modulated by drug stimuli in cocaine addiction. Brain Imaging Behav 12(5):1259–1270. https://doi.org/10.1007/s11682-017-9799-3

    Article  PubMed  Google Scholar 

  39. Filbey FM, Gohel S, Prashad S, Biswal BB (2018) Differential associations of combined vs isolated cannabis and nicotine on brain resting state networks. Brain Struct Funct 223(7):3317–3326. https://doi.org/10.1007/s00429-018-1690-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li M, Chen H, Wang J, Liu F, Long Z, Wang Y, Iturria-Medina Y, Zhang J, Yu C, Chen H (2014) Handedness- and hemisphere-related differences in small-world brain networks: a diffusion tensor imaging tractography study. Brain Connect 4(2):145–156. https://doi.org/10.1089/brain.2013.0211

    Article  PubMed  PubMed Central  Google Scholar 

  41. Farrer C, Frey SH, Van Horn JD, Tunik E, Turk D, Inati S, Grafton ST (2008) The angular gyrus computes action awareness representations. Cereb Cortex 18(2):254–261. https://doi.org/10.1093/cercor/bhm050

    Article  PubMed  Google Scholar 

  42. Niu H, Zheng Y, Huma T, Rizak JD, Li L, Wang G, Ren H, Xu L, Yang J, Ma Y, Lei H (2013) Lesion of olfactory epithelium attenuates expression of morphine-induced behavioral sensitization and reinstatement of drug-primed conditioned place preference in mice. Pharmacol Biochem Behav 103(3):526–534. https://doi.org/10.1016/j.pbb.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  43. Kermen F, Sultan S, Sacquet J, Mandairon N, Didier A (2010) Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory. PLoS ONE ONE 5(8):e12118. https://doi.org/10.1371/journal.pone.0012118

    Article  CAS  Google Scholar 

  44. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773. https://doi.org/10.1016/S2215-0366(16)00104-8

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238. https://doi.org/10.1038/npp.2009.110

    Article  PubMed  Google Scholar 

  46. Hanlon CA, Dowdle LT, Henderson JS (2018) Modulating neural circuits with transcranial magnetic stimulation: implications for addiction treatment development. Pharmacol Rev 70(3):661–683. https://doi.org/10.1124/pr.116.013649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Madeo G, Bonci A (2019) Rewiring the addicted brain: circuits-based treatment for addiction. Cold Spring Harb Symp Quant Biol 83:173–184. https://doi.org/10.1101/sqb.2018.83.038158

    Article  Google Scholar 

Download references

Acknowledgments

We thank the patients for their participation in the study and the medical and nurse staff for their collaboration in the realization of this work.

Funding

This study has received funding by the National Natural Science Foundation of China (Grant Nos. 81901729 and 81771807, 81701111), the Natural Science Foundation of Guangdong (Grant Nos. 2019A1515011314, 2015A030313723).

Author information

Authors and Affiliations

Authors

Contributions

YW, GJ—study concepts/study design or data acquisition or data analysis/interpretation, study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of final version of submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors; project administration—YW, GJ, Supervision—GJ, writing-original draft—YW, writing-review & editing—YW, ZZ, ML; visualization—ZZ, YW; data curation—SF, YY, ZL, SX; investigation—SF, XM; formal analysis—CG, JL, YY; and software—YW, JF, KY.

Corresponding author

Correspondence to Guihua Jiang.

Ethics declarations

Conflict of interest

The authors declaim no financial or any other potential conflict of interest.

Additional information

Communicated by Sebastian Walther.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhou, Z., Li, M. et al. Abnormal white matter within brain structural networks is associated with high-impulse behaviour in codeine-containing cough syrup dependent users. Eur Arch Psychiatry Clin Neurosci 271, 823–833 (2021). https://doi.org/10.1007/s00406-020-01111-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-020-01111-4

Keywords

Navigation