Skip to main content
Log in

Improvement in minimal cross-sectional area and nasal-cavity volume occurs in different areas after septoplasty and radiofrequency therapy of inferior turbinates

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Septoplasty and radiofrequency therapy for inferior turbinate hypertrophy (RFIT) are common techniques used to improve nasal patency. Our aim was to compare nasal geometry and function using acoustic rhinometry and peak nasal inspiratory flow (PNIF) in three patients groups undergoing surgery for nasal obstruction, and to investigate if the improvement in minimal cross-sectional area (MCA) and nasal-cavity volume (NCV) occurred in different cavity areas in the groups. Finally, we evaluated the correlation between the objective measurements and the patients’ assessment of nasal obstruction (SNO).

Methods

This prospective, observational study investigated 148 patients pre-operatively and 6 months post-operatively. Fifty patients underwent septoplasty (group 1), 51 underwent septoplasty combined with RFIT (group 2), and 47 underwent RFIT alone (group 3). The MCA and NCV were measured at two distances (MCA/NCV0–3.0 and MCA/NCV3–5.2), in addition to measuring PNIF and SNO.

Results

Pre-operatively, groups 1 and 2 had narrower MCA0–3.0 on one side than group 3 (0.31 ± 0.14 and 0.31 ± 0.14) versus (0.40 ± 0.16) cm2. Post-operatively, total MCA0–3.0 and MCA/NCV3–5.2 increased in group 1. In group 2, MCA/NCV0–3.0 at the narrow side and total MCA/NCV3–5.2 increased, while total MCA/NCV3–5.2 increased in group 3. PNIF improved from 106 ± 49 to 150 ± 57 l/min post-operatively. We found a correlation between increased MCA and NCV and less SNO in the septoplasty group (p < 0.01).

Conclusion

Surgery produced an improvement in MCA and NCV in all groups. The improvement occurred in different areas of the nasal cavity in the patient groups. Both anterior and posterior areas increased in the septoplasty groups, while only the posterior area increased in the RFIT group. PNIF improved in all three patient groups, indicating that surgery produced an improvement in nasal patency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Han JK, Stringer SP, Rosenfeld RM, Archer SM, Baker DP, Brown SM, Edelstein DR, Gray ST, Lian TS, Ross EJ, Seiden AM, Setzen M, Tollefson TT, Ward PD, Welch KC, Wise SK, Nnacheta LC (2015) Clinical consensus statement: septoplasty with or without inferior turbinate reduction. Otolaryngol Head Neck Surg 153(5):708–720. https://doi.org/10.1177/0194599815606435

    Article  PubMed  Google Scholar 

  2. Nurse LA, Duncavage JA (2009) Surgery of the inferior and middle turbinates. Otolaryngol Clin N Am 42(2):295–309. https://doi.org/10.1016/j.otc.2009.01.009 ix.

    Article  Google Scholar 

  3. Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, Bousquet PJ, Brozek G, Bruno A, Dahlen SE, Forsberg B, Gunnbjornsdottir M, Kasper L, Kramer U, Kowalski ML, Lange B, Lundback B, Salagean E, Todo-Bom A, Tomassen P, Toskala E, van Drunen CM, Bousquet J, Zuberbier T, Jarvis D, Burney P (2011) Chronic rhinosinusitis in Europe–an underestimated disease. A GA(2)LEN study. Allergy 66(9):1216–1223. https://doi.org/10.1111/j.1398-9995.2011.02646.x

    Article  PubMed  CAS  Google Scholar 

  4. Bauchau V, Durham SR (2004) Prevalence and rate of diagnosis of allergic rhinitis in Europe. Eur Respir J 24(5):758–764. https://doi.org/10.1183/09031936.04.00013904

    Article  PubMed  CAS  Google Scholar 

  5. Millqvist E, Bende M (1998) Reference values for acoustic rhinometry in subjects without nasal symptoms. Am J Rhinol 12(5):341–343

    Article  PubMed  CAS  Google Scholar 

  6. Clement PA, Gordts F (2005) Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 43(3):169–179

    PubMed  CAS  Google Scholar 

  7. Andre RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenite GJ (2009) Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 34(6):518–525. https://doi.org/10.1111/j.1749-4486.2009.02042.x

    Article  PubMed  CAS  Google Scholar 

  8. Holmstrom M (2010) The use of objective measures in selecting patients for septal surgery. Rhinology 48(4):387–393. https://doi.org/10.4193/Rhino10.072

    Article  PubMed  Google Scholar 

  9. Hilberg O (2002) Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects. Allergy 57(Suppl 70):5–39

    Article  PubMed  Google Scholar 

  10. Nathan RA, Eccles R, Howarth PH, Steinsvag SK, Togias A (2005) Objective monitoring of nasal patency and nasal physiology in rhinitis. J Allergy Clin Immunol 115(3 Suppl 1):S442-459. https://doi.org/10.1016/j.jaci.2004.12.015

    Article  Google Scholar 

  11. Grymer LF, Hilberg O, Pedersen OF, Rasmussen TR (1991) Acoustic rhinometry: values from adults with subjective normal nasal patency. Rhinology 29(1):35–47

    PubMed  CAS  Google Scholar 

  12. Cole P (2003) The four components of the nasal valve. Am J Rhinol 17(2):107–110

    Article  PubMed  Google Scholar 

  13. Pfitzner J (1976) Poiseuille and his law. Anaesthesia 31(2):273–275

    Article  PubMed  CAS  Google Scholar 

  14. Stewart MG, Smith TL, Weaver EM, Witsell DL, Yueh B, Hannley MT, Johnson JT (2004) Outcomes after nasal septoplasty: results from the Nasal Obstruction Septoplasty Effectiveness (NOSE) study. Otolaryngol Head Neck Surg 130(3):283–290. https://doi.org/10.1016/j.otohns.2003.12.004

    Article  PubMed  Google Scholar 

  15. Veit JA, Nordmann M, Dietz B, Sommer F, Lindemann J, Rotter N, Greve J, von Bomhard A, Hoffmann TK, Riepl R, Scheithauer MO (2017) Three different turbinoplasty techniques combined with septoplasty: prospective randomized trial. Laryngoscope 127(2):303–308. https://doi.org/10.1002/lary.26264

    Article  PubMed  Google Scholar 

  16. Haavisto LE, Sipila JI (2013) Acoustic rhinometry, rhinomanometry and visual analogue scale before and after septal surgery: a prospective 10-year follow-up. Clin Otolaryngol 38(1):23–29. https://doi.org/10.1111/coa.12043

    Article  PubMed  CAS  Google Scholar 

  17. Enache A, Lieder A, Issing W (2014) Nasal septoplasty with submucosal diathermy to inferior turbinates improves symptoms at 3 months postoperatively in a study of one hundred and one patients. Clin Otolaryngol 39(1):57–63. https://doi.org/10.1111/coa.12219

    Article  PubMed  CAS  Google Scholar 

  18. Sundh C, Sunnergren O (2015) Long-term symptom relief after septoplasty. Eur Arch Otorhinolaryngol 272(10):2871–2875. https://doi.org/10.1007/s00405-014-3406-7

    Article  PubMed  Google Scholar 

  19. Grymer LF (2000) Clinical applications of acoustic rhinometry. Rhinol Suppl 16:35–43

    PubMed  CAS  Google Scholar 

  20. Grymer LF, Illum P, Hilberg O (1993) Septoplasty and compensatory inferior turbinate hypertrophy: a randomized study evaluated by acoustic rhinometry. J Laryngol Otol 107(5):413–417

    Article  PubMed  CAS  Google Scholar 

  21. Passali D, Lauriello M, Anselmi M, Bellussi L (1999) Treatment of hypertrophy of the inferior turbinate: long-term results in 382 patients randomly assigned to therapy. Ann Otol Rhinol Laryngol 108(6):569–575. https://doi.org/10.1177/000348949910800608

    Article  PubMed  CAS  Google Scholar 

  22. Ye T, Zhou B (2015) Update on surgical management of adult inferior turbinate hypertrophy. Curr Opin Otolaryngol Head Neck Surg 23(1):29–33. https://doi.org/10.1097/moo.0000000000000130

    Article  PubMed  Google Scholar 

  23. Brunworth J, Holmes J, Sindwani R (2013) Inferior turbinate hypertrophy: review and graduated approach to surgical management. Am J Rhinol Allergy 27(5):411–415. https://doi.org/10.2500/ajra.2013.27.3912

    Article  PubMed  Google Scholar 

  24. Harrill WC, Pillsbury HC IIIrd, McGuirt WF, Stewart MG (2007) Radiofrequency turbinate reduction: a NOSE evaluation. Laryngoscope 117(11):1912–1919. https://doi.org/10.1097/MLG.0b013e3181271414

    Article  PubMed  Google Scholar 

  25. Hilberg O, Pedersen OF (2000) Acoustic rhinometry: recommendations for technical specifications and standard operating procedures. Rhinol Suppl 16:3–17

    PubMed  CAS  Google Scholar 

  26. Kjaergaard T, Cvancarova M, Steinsvag SK (2009) Relation of nasal air flow to nasal cavity dimensions. Arch Otolaryngol Head Neck Surg 135(6):565–570. https://doi.org/10.1001/archoto.2009.50

    Article  PubMed  Google Scholar 

  27. Grant S, Aitchison T, Henderson E, Christie J, Zare S, McMurray J, Dargie H (1999) A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest 116(5):1208–1217

    Article  PubMed  CAS  Google Scholar 

  28. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P, Georgalas C, Goossens H, Harvey R, Hellings P, Hopkins C, Jones N, Joos G, Kalogjera L, Kern B, Kowalski M, Price D, Riechelmann H, Schlosser R, Senior B, Thomas M, Toskala E, Voegels R, Wang de Y, Wormald PJ (2012) EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 50(1):1–12. https://doi.org/10.4193/Rhino50E2

    Article  PubMed  Google Scholar 

  29. Thorstensen WM, Sue-Chu M, Bugten V, Steinsvag SK (2013) Nasal flow, volumes, and minimal cross sectional areas in asthmatics. Respir Med 107(10):1515–1520. https://doi.org/10.1016/j.rmed.2013.07.021

    Article  PubMed  Google Scholar 

  30. Moxness MH, Bugten V, Thorstensen WM, Nordgard S, Bruskeland G (2016) A comparison of minimal cross sectional areas, nasal volumes and peak nasal inspiratory flow between patients with obstructive sleep apnea and healthy controls. Rhinology 54(4):342–347. https://doi.org/10.4193/Rhin16.085

    Article  PubMed  CAS  Google Scholar 

  31. Illum P (1997) Septoplasty and compensatory inferior turbinate hypertrophy: long-term results after randomized turbinoplasty. Eur Arch Otorhinolaryngol 254(Suppl 1):S89-92

    PubMed  Google Scholar 

  32. Pirila T, Tikanto J (2001) Unilateral and bilateral effects of nasal septum surgery demonstrated with acoustic rhinometry, rhinomanometry, and subjective assessment. Am J Rhinol 15(2):127–133

    Article  PubMed  CAS  Google Scholar 

  33. Ottaviano G, Scadding GK, Coles S, Lund VJ (2006) Peak nasal inspiratory flow; normal range in adult population. Rhinology 44(1):32–35

    PubMed  Google Scholar 

  34. Nilsen AH, Helvik AS, Thorstensen WM, Bugten V (2018) A comparison of symptoms and quality of life before and after nasal septoplasty and radiofrequency therapy of the inferior turbinate. BMC Ear Nose Throat Disord 18:2. https://doi.org/10.1186/s12901-017-0050-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karatzanis AD, Fragiadakis G, Moshandrea J, Zenk J, Iro H, Velegrakis GA (2009) Septoplasty outcome in patients with and without allergic rhinitis. Rhinology 47(4):444–449. https://doi.org/10.4193/Rhin08.126

    Article  PubMed  Google Scholar 

  36. Acevedo JL, Camacho M, Brietzke SE (2015) Radiofrequency ablation turbinoplasty versus microdebrider-assisted turbinoplasty: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 153(6):951–956. https://doi.org/10.1177/0194599815607211

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the ENT Department at St Olav’s University Hospital and the Unit for Applied Research (AKF) at the Norwegian University of Science and Technology (NTNU) for assisting in registry data management. The Liaison Committee between St Olav’s University Hospital and the Faculty of Medicine and Health, NTNU was the main founding contributor to this study.

Author information

Authors and Affiliations

Authors

Contributions

AHN: study design, data collection, statistical analysis, and paper drafting, WMT: study design, data collection, statistical analysis, and paper drafting. ASH: study design, statistical analysis, and paper drafting. SN: data collection and paper drafting. VB: study design, data collection, statistical analysis, and paper drafting.

Corresponding author

Correspondence to Ann Helen Nilsen.

Ethics declarations

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the regional research committee and with the Helsinki declaration.

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilsen, A.H., Thorstensen, W.M., Helvik, AS. et al. Improvement in minimal cross-sectional area and nasal-cavity volume occurs in different areas after septoplasty and radiofrequency therapy of inferior turbinates. Eur Arch Otorhinolaryngol 275, 1995–2003 (2018). https://doi.org/10.1007/s00405-018-5022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-018-5022-4

Keywords

Navigation