Skip to main content
Log in

Microfluidic chips as a method for sperm selection improve fertilization rate in couples with fertilization failure

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Sperm quality plays a vital role in successful fertilization and pregnancy. Patients with fertilization failure (total failure or low-fertilization rate) despite having normal semen parameters are a challenging group whose sperm cannot fertilize the oocyte via the intracytoplasmic sperm injection (ICSI) technique. Microfluidics is offered as a new method for proper sperm sorting.

Methods

This study aimed to evaluate sperm parameters, DNA fragmentation index (DFI), expression of phospholipase C zeta 1 (PLCZ1), and transition nuclear proteins 1 (TNP1) mRNAs in sperm selected by microfluidic sperm sorting (MSS) chip compared with conventional density gradient centrifugation technique in patients with fertilization failure following ICSI. Subsequence fertilization rate and embryo quality were assayed.

Results

Normal morphology and total motility were significantly higher, and DFI was significantly lower in sperm selected by the MSS chip in fertilization failure and control groups. The RT-PCR results demonstrated a significant increase in the expression of PLCZ1 and TNP1 genes in sperm of both groups selected by MSS chips compared to the DGC method. In addition, with the selected sperm by MSS chip, an increase in fertilization rate and improvement of embryo quality was obtained.

Conclusion

The present study findings show that sperm sorting by the microfluidic method improves fertilization rate in patients with poor fertilization outcomes following ICSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yildiz K, Yuksel S (2019) Use of microfluidic sperm extraction chips as an alternative method in patients with recurrent in vitro fertilisation failure. J Assist Reprod Genet 36(7):1423–1429

    Article  PubMed  PubMed Central  Google Scholar 

  2. Azizi E, Naji M, Nazarian H, Salehpour S, Borumandnia N, Shams MZ (2020) Does timing in ICSI cycle affect oocyte quality and reproductive outcomes? A prospective study. Arch Gynecol Obstet 302(2):505–513

    Article  PubMed  Google Scholar 

  3. Torra-Massana M, Cornet-Bartolomé D, Barragán M, Durban M, Ferrer-Vaquer A, Zambelli F et al (2019) Novel phospholipase C zeta 1 mutations associated with fertilization failures after ICSI. Hum Reprod 34(8):1494–1504

    Article  CAS  PubMed  Google Scholar 

  4. Tang L, Rao M, Yang W, Yao Y, Luo Q, Lu L et al (2021) Predictive value of the sperm DNA fragmentation index for low or failed IVF fertilization in men with mild-to-moderate asthenozoospermia. J Gynecol Obstet Hum Reprod 50(6):101868

    Article  PubMed  Google Scholar 

  5. Kahyaoglu I, Demir B, Turkkanı A, Cınar O, Dilbaz S, Dilbaz B et al (2014) Total fertilization failure: is it the end of the story? J Assist Reprod Genet 31(9):1155–1160

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yan Z, Fan Y, Wang F, Yan Z, Li M, Ouyang J et al (2020) Novel mutations in PLCZ1 cause male infertility due to fertilization failure or poor fertilization. Hum Reprod 35(2):472–481

    Article  CAS  PubMed  Google Scholar 

  7. Aghajanpour S, Ghaedi K, Salamian A, Deemeh M, Tavalaee M, Moshtaghian J et al (2011) Quantitative expression of phospholipase C zeta, as an index to assess fertilization potential of a semen sample. Hum Reprod 26(11):2950–2956

    Article  CAS  PubMed  Google Scholar 

  8. Haghighat S, Tavalaee M, Zakeri Z, Noureddini M, Shahverdi A, Esfahani MHN (2019) Reduction of truncated Kit Expression in men with abnormal semen parameters, globozoospermia and history of low or fertilization failure. Cell J (Yakhteh) 21(3):314

    Google Scholar 

  9. Amdani SN, Jones C, Coward K (2013) Phospholipase C zeta (PLCζ): oocyte activation and clinical links to male factor infertility. Adv Biol Regul 53(3):292–308

    Article  CAS  PubMed  Google Scholar 

  10. Yoon S-Y, Jellerette T, Salicioni AM, Lee HC, Yoo M-S, Coward K et al (2008) Human sperm devoid of PLC, zeta 1 fail to induce Ca 2+ release and are unable to initiate the first step of embryo development. J Clin Investig 118(11):3671–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai J, Dai C, Guo J, Zheng W, Zhang T, Li Y et al (2020) Novel homozygous variations in PLCZ1 lead to poor or failed fertilization characterized by abnormal localization patterns of PLCζ in sperm. Clin Genet 97(2):347–351

    Article  CAS  PubMed  Google Scholar 

  12. Kashir J, Konstantinidis M, Jones C, Lemmon B, Chang Lee H, Hamer R et al (2012) A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility. Hum Reprod 27(1):222–231

    Article  CAS  PubMed  Google Scholar 

  13. Escoffier J, Lee HC, Yassine S, Zouari R, Martinez G, Karaouzène T et al (2016) Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet 25(5):878–891

    Article  CAS  PubMed  Google Scholar 

  14. Khattri A, Bhushan S, Sireesha V, Gupta N, Chakravarty B, Deendayal M et al (2011) The TNP1 haplotype–GCG is associated with azoospermia. Int J Androl 34(2):173–182

    Article  CAS  PubMed  Google Scholar 

  15. Della-Maria J, Gerard A, Franck P, Gerard H (2002) Effects of androgen-binding protein (ABP) on spermatid Tnp1 gene expression in vitro. Mol Cell Endocrinol 198(1–2):131–141

    Article  CAS  PubMed  Google Scholar 

  16. Ozcan P, Takmaz T, Yazici MGK, Alagoz OA, Yesiladali M, Sevket O et al (2021) Does the use of microfluidic sperm sorting for the sperm selection improve in vitro fertilization success rates in male factor infertility? J Obstet Gynaecol Res 47(1):382–388

    Article  CAS  PubMed  Google Scholar 

  17. Yetkinel S, Kilicdag EB, Aytac PC, Haydardedeoglu B, Simsek E, Cok T (2019) Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: a prospective, randomized controlled trial. J Assist Reprod Genet 36(3):403–409

    Article  PubMed  Google Scholar 

  18. Kishi K, Ogata H, Ogata S, Mizusawa Y, Okamoto E, Matsumoto Y et al (2015) Frequency of sperm DNA fragmentation according to selection method: comparison and relevance of a microfluidic device and a swim-up procedure. J Clin Diagn Res 9(11):14–16

    Google Scholar 

  19. Aitken RJ, Clarkson JS (1988) Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl 9(6):367–376

    Article  CAS  PubMed  Google Scholar 

  20. Dai X, Wang Y, Cao F, Yu C, Gao T, Xia X et al (2020) Sperm enrichment from poor semen samples by double density gradient centrifugation in combination with swim-up for IVF cycles. Sci Rep 10(1):1–8

    Article  CAS  Google Scholar 

  21. Zini AFA, Phang D, Jarvi K (2000) Influence of semen processing technique on human sperm DNA integrity. Urology 56(6):1081–1084

    Article  CAS  PubMed  Google Scholar 

  22. Parrella A, Keating D, Cheung S, Xie P, Stewart JD, Rosenwaks Z et al (2019) A treatment approach for couples with disrupted sperm DNA integrity and recurrent ART failure. J Assist Reprod Genet 36(10):2057–2066

    Article  PubMed  PubMed Central  Google Scholar 

  23. Quinn MM, Jalalian L, Ribeiro S, Ona K, Demirci U, Cedars MI et al (2018) Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples. Hum Reprod 33(8):1388–1393

    Article  CAS  PubMed  Google Scholar 

  24. Kashir J (2020) Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 37(6):1273–1293

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jedrzejczak P, Kempisty B, Bryja A, Mostowska M, Depa-Martynow M, Pawelczyk L et al (2007) Quantitative assessment of transition proteins 1, 2 spermatid-specific linker histone H1-like protein transcripts in spermatozoa from normozoospermic and asthenozoospermic men. Arch Androl 53(4):199–205

    Article  CAS  PubMed  Google Scholar 

  26. WHO (2010) World Health Organization laboratory manual for the examination and processing of human semen

  27. Van Royen E, Mangelschots K, De Neubourg D, Valkenburg M, Van de Meerssche M, Ryckaert G et al (1999) Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod 14(9):2345–2349

    Article  PubMed  Google Scholar 

  28. Kabukçu C, Çil N, Çabuş Ü, Alataş E (2021) Effect of ejaculatory abstinence period on sperm DNA fragmentation and pregnancy outcome of intrauterine insemination cycles: a prospective randomized study. Arch Gynecol Obstet 303(1):269–278

    Article  PubMed  CAS  Google Scholar 

  29. Rex A, Aagaard J, Fedder J (2017) DNA fragmentation in spermatozoa: a historical review. Andrology 5(4):622–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K (2002) Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology 60(6):1069–1072

    Article  PubMed  Google Scholar 

  31. Zhu WJ (2018) Preparation and observation methods can produce misleading artefacts in human sperm ultrastructural morphology. Andrologia 50(7):e13043

    Article  PubMed  Google Scholar 

  32. Marzano G, Chiriacò MS, Primiceri E, Dell’Aquila ME, Ramalho-Santos J, Zara V et al (2020) Sperm selection in assisted reproduction: a review of established methods and cutting-edge possibilities. Biotechnol Adv 40:107498

    Article  PubMed  Google Scholar 

  33. Yalcinkaya Kalyan E, Can Celik S, Okan O, Akdeniz G, Karabulut S, Caliskan E (2019) Does a microfluidic chip for sperm sorting have a positive add-on effect on laboratory and clinical outcomes of intracytoplasmic sperm injection cycles? A sibling oocyte study. Andrologia 51(10):e13403

    Article  PubMed  Google Scholar 

  34. Gode F, Gürbüz AS, Tamer B, Pala I, Isik AZ (2020) The effects of microfluidic sperm sorting, density gradient and swim-up methods on semen oxidation reduction potential. Urol J 17(4):397–401

    PubMed  Google Scholar 

  35. Ješeta M, Franzová K, Žáková J, Ventruba P, Crha I (2020) Comparison of microfluidic and swim-up sperm separation methods for IVF. Med J Cell Biol 8(4):170–175

    Article  Google Scholar 

  36. van der Westerlaken L, Helmerhorst F, Dieben S, Naaktgeboren N (2005) Intracytoplasmic sperm injection as a treatment for unexplained total fertilization failure or low fertilization after conventional in vitro fertilization. Fertil Steril 83(3):612–617

    Article  PubMed  Google Scholar 

  37. Xue L-T, Wang R-X, He B, Mo W-Y, Huang L, Wang S-K et al (2016) Effect of sperm DNA fragmentation on clinical outcomes for Chinese couples undergoing in vitro fertilization or intracytoplasmic sperm injection. J Int Med Res 44(6):1283–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee HC, Arny M, Grow D, Dumesic D, Fissore RA, Jellerette-Nolan T (2014) Protein phospholipase C Zeta1 expression in patients with failed ICSI but with normal sperm parameters. J Assist Reprod Genet 31(6):749–756

    Article  PubMed  PubMed Central  Google Scholar 

  39. Meerschaut FV, Nikiforaki D, Heindryckx B, De Sutter P (2014) Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online 28(5):560–571

    Article  Google Scholar 

  40. Yelumalai S, Yeste M, Jones C, Amdani S, Kashir J, Mounce G et al (2015) Total levels and proportions of sperm exhibiting phospholipase C Zeta (PLCζ) are significantly correlated with fertilization rates following intracytoplasmic sperm injection. Fert Steril 104:561–568

    Article  CAS  Google Scholar 

  41. Mu J, Zhang Z, Wu L, Fu J, Chen B, Yan Z et al (2020) The identification of novel mutations in PLCZ1 responsible for human fertilization failure and a therapeutic intervention by artificial oocyte activation. Mol Hum Reprod 26(2):80–87

    Article  CAS  PubMed  Google Scholar 

  42. Meng X, Melo P, Jones C, Ross C, Mounce G, Turner K et al (2020) Use of phospholipase C zeta analysis to identify candidates for artificial oocyte activation: a case series of clinical pregnancies and a proposed algorithm for patient management. Fertil Steril 114(1):163–174

    Article  PubMed  Google Scholar 

  43. Tavalaee M, Kiani-Esfahani A, Nasr-Esfahani MH (2017) Relationship between phospholipase C-zeta, semen parameters, and chromatin status. Syst Biol Reprod Med 63(4):259–268

    Article  CAS  PubMed  Google Scholar 

  44. Miyagawa Y, Nishimura H, Tsujimura A, Matsuoka Y, Matsumiya K, Okuyama A et al (2005) Single-nucleotide polymorphisms and mutation analyses of the TNP1 and TNP2 genes of fertile and infertile human male populations. J Androl 26(6):779–786

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Iran University of Medical Sciences under Grant (number 13580).

Author information

Authors and Affiliations

Authors

Contributions

FA contributed to the design of the study, acquisition, revision and gave input at all stages of the study. JSM, ZZ, MM, RA, MST and ASM took part in collection and analysis of data. NS contributed to drafting the article and critical discussion. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Fatemehsadat Amjadi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The present study was approved by the Ethics Committee of Iran University of Medical Sciences (IR.IUMS.FMD.REC.1398.179).

Consent to participate

All the participants provided written informed consent before sample collection.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirsanei, J.S., Sheibak, N., Zandieh, Z. et al. Microfluidic chips as a method for sperm selection improve fertilization rate in couples with fertilization failure. Arch Gynecol Obstet 306, 901–910 (2022). https://doi.org/10.1007/s00404-022-06618-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06618-w

Keywords

Navigation