Skip to main content

Advertisement

Log in

LncRNA SNHG14 accelerates breast cancer progression through sponging miR-543 and regulating KLF7 expression

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Dysregulation of long non-coding RNAs (lncRNAs) is being found to have relevance to human cancers, including breast cancer (BC). The aim of this study was to further explore the functional role and molecular mechanisms of small nucleolar RNA host gene 14 (SNHG14) on BC progression.

Methods

The expression levels of SNHG14, miR-543, and krüppel-like factor 7 (KLF7) mRNA were determined by quantitative real-time PCR. Western blot analysis was used to evaluate KLF7 protein level. Cell proliferation, apoptosis, and migration and invasion abilities were detected by Cell Counting kit-8 assay, flow cytometry, and transwell assay, respectively. The direct interactions between miR-543 and SNHG14 or KLF7 were confirmed using dual-luciferase reporter assays.

Results

Our data indicated that SNHG14 expression was increased in BC tissues and cells, and SNHG14 knockdown mitigated the proliferation, migration, and invasion and facilitated apoptosis of BC cells. SNHG14 directly interacted with miR-543. MiR-543 mediated the regulatory effects of SNHG14 silencing on BC cell behaviors. Moreover, KLF7 was a direct target of miR-543. Overexpressed miR-543-mediated anti-proliferation, anti-migration, anti-invasion, and pro-apoptosis effects were mediated by KLF7. Furthermore, SNHG14 modulated KFL7 expression through acting as a competing endogenous RNA (ceRNA) of miR-543 in BC cells.

Conclusion

Our study suggested that SNHG14 knockdown hindered BC progression in vitro at least partly through acting as a ceRNA of miR-543 and modulating KLF7 expression, providing evidence for SNHG14 as a potential target for BC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ (2015) He J (2016) Cancer statistics in China. CA Cancer J Clin 66(2):115–132

    Article  CAS  Google Scholar 

  3. Li T, Mello-Thoms C, Brennan PC (2016) Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Res Treat 159(3):395–406

    Article  CAS  Google Scholar 

  4. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62

    Article  CAS  Google Scholar 

  5. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261

    Article  CAS  Google Scholar 

  6. Liu Y, Sharma S, Watabe K (2015) Roles of lncRNA in breast cancer. Front Biosci 7:94–108

    Article  Google Scholar 

  7. Di W, Weinan X, Xin L, Zhiwei Y, Xinyue G, Jinxue T, Mingqi L (2019) Long noncoding RNA SNHG14 facilitates colorectal cancer metastasis through targeting EZH2-regulated EPHA7. Cell Death Dis 10(7):514

    Article  Google Scholar 

  8. Li L, Zhang R, Li SJ (2019) Long noncoding RNA SNHG14 promotes ovarian cancer cell proliferation and metastasis via sponging miR-219a-5p. Eur Rev Med Pharmacol Sci 23(10):4136–4142

    CAS  PubMed  Google Scholar 

  9. Zhang YY, Li M, Xu YD, Shang J (2019) LncRNA SNHG14 promotes the development of cervical cancer and predicts poor prognosis. Eur Rev Med Pharmacol Sci 23(9):3664–3671

    PubMed  Google Scholar 

  10. Xie SD, Qin C, Jin LD, Wang QC, Shen J, Zhou JC, Chen YX, Huang AH, Zhao WH, Wang LB (2019) Long noncoding RNA SNHG14 promotes breast cancer cell proliferation and invasion via sponging miR-193a-3p. Eur Rev Med Pharmacol Sci 23(6):2461–2468

    PubMed  Google Scholar 

  11. Dong H, Wang W, Mo S, Liu Q, Chen X, Chen R, Zhang Y, Zou K, Ye M, He X, Zhang F, Han J, Hu J (2018) Long non-coding RNA SNHG14 induces trastuzumab resistance of breast cancer via regulating PABPC1 expression through H3K27 acetylation. J Cell Mol Med 22(10):4935–4947

    Article  CAS  Google Scholar 

  12. Iwakawa HO, Tomari Y (2015) The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol 25(11):651–665

    Article  CAS  Google Scholar 

  13. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469

    Article  CAS  Google Scholar 

  14. Liu X, Gan L, Zhang J (2019) miR-543 inhibites cervical cancer growth and metastasis by targeting TRPM7. Chem Biol Interact 302:83–92

    Article  CAS  Google Scholar 

  15. Chen ZY, Du Y, Wang L, Liu XH, Guo J, Weng XD (2018) MiR-543 promotes cell proliferation and metastasis of renal cell carcinoma by targeting Dickkopf 1 through the Wnt/beta-catenin signaling pathway. J Cancer 9(20):3660–3668

    Article  Google Scholar 

  16. Xu J, Wang F, Wang X, He Z, Zhu X (2018) miRNA-543 promotes cell migration and invasion by targeting SPOP in gastric cancer. Onco Targets Ther 11:5075–5082

    Article  CAS  Google Scholar 

  17. Chen P, Xu W, Luo Y, Zhang Y, He Y, Yang S, Yuan Z (2017) MicroRNA 543 suppresses breast cancer cell proliferation, blocks cell cycle and induces cell apoptosis via direct targeting of ERK/MAPK. Onco Targets Ther 10:1423–1431

    Article  CAS  Google Scholar 

  18. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358

    Article  CAS  Google Scholar 

  19. Lu G, Li Y, Ma Y, Lu J, Chen Y, Jiang Q, Qin Q, Zhao L, Huang Q, Luo Z, Huang S, Wei Z (2018) Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res 37(1):289

    Article  CAS  Google Scholar 

  20. Zhou P, Liu P, Zhang J (2019) Long noncoding RNA RUSC1ASN promotes cell proliferation and metastasis through Wnt/betacatenin signaling in human breast cancer. Mol Med Rep 19(2):861–868

    CAS  PubMed  Google Scholar 

  21. Pawlowska E, Szczepanska J, Blasiak J (2017) The long noncoding RNA HOTAIR in breast cancer: does autophagy play a role? Int J Mol Sci 18(11):2317

    Article  Google Scholar 

  22. Zhang Z, Wang Y, Zhang W, Li J, Liu W, Lu W (2019) Long non-coding RNA SNHG14 exerts oncogenic functions in non-small cell lung cancer through acting as an miR-340 sponge. Biosci Rep. https://doi.org/10.1042/BSR20180941

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu Z, Yan Y, Cao S, Chen Y (2018) Long non-coding RNA SNHG14 contributes to gastric cancer development through targeting miR-145/SOX9 axis. J Cell Biochem 119(8):6905–6913

    Article  CAS  Google Scholar 

  24. Liu G, Ye Z, Zhao X, Ji Z (2017) SP1-induced up-regulation of lncRNA SNHG14 as a ceRNA promotes migration and invasion of clear cell renal cell carcinoma by regulating N-WASP. Am J Cancer Res 7(12):2515–2525

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong H, Wang W, Chen R, Zhang Y, Zou K, Ye M, He X, Zhang F, Han J (2018) Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int J Oncol 53(3):1013–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Du Y, Liu XH, Zhu HC, Wang L, Ning JZ, Xiao CC (2017) MiR-543 promotes proliferation and epithelial-mesenchymal transition in prostate cancer via targeting RKIP. Cell Physiol Biochem 41(3):1135–1146

    Article  CAS  Google Scholar 

  27. Zhao H, Diao C, Wang X, Xie Y, Liu Y, Gao X, Han J, Li S (2018) MiR-543 promotes migration, invasion and epithelial-mesenchymal transition of esophageal cancer cells by targeting phospholipase A2 Group IVA. Cell Physiol Biochem 48(4):1595–1604

    Article  CAS  Google Scholar 

  28. Guan F, Kang Z, Zhang JT, Xue NN, Yin H, Wang L, Mao BB, Peng WC, Zhang BL, Liang X, Hu ZQ (2019) KLF7 promotes polyamine biosynthesis and glioma development through transcriptionally activating ASL. Biochem Biophys Res Commun 514(1):51–57

    Article  CAS  Google Scholar 

  29. Zhao L, Zhang Y, Liu J, Yin W, Jin D, Wang D, Zhang W (2018) MiR-185 inhibits cell proliferation and invasion of non-small cell lung cancer by targeting KLF7. Oncol Res. https://doi.org/10.3727/096504018X15247341491655

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marrero-Rodriguez D, la Cruz HA, Taniguchi-Ponciano K, Gomez-Virgilio L, Huerta-Padilla V, Ponce-Navarrete G, Andonegui-Elguera S, Jimenez-Vega F, Romero-Morelos P, Rodriguez-Esquivel M, Meraz-Rios M, Figueroa-Corona MDP, Monroy A, Perez-Gonzalez O, Salcedo M (2017) Kruppel like factors family expression in cervical cancer cells. Arch Med Res 48(4):314–322

    Article  CAS  Google Scholar 

  31. Jiang Z, Yu T, Fan Z, Yang H, Lin X (2017) Kruppel-Like Factor 7 is a marker of aggressive gastric cancer and poor prognosis. Cell Physiol Biochem 43(3):1090–1099

    Article  CAS  Google Scholar 

  32. Ye P, Shi Y, An N, Zhou Q, Guo J, Long X (2018) miR-145 overexpression triggers alteration of the whole transcriptome and inhibits breast cancer development. Biomed Pharmacother 100:72–82

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

DZ: project development, data collection, data analysis, and manuscript writing. XD: data collection and data analysis. MP: project development, data analysis, and manuscript editing.

Corresponding author

Correspondence to Meirong Peng.

Ethics declarations

Conflict of interest

The authors have no interests to disclose.

Ethical approval

Our study was approved by the Human Research Ethics Committee of Jingmen No. 1 People’s Hospital, and written informed consent was signed by each participator before surgery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Ding, X. & Peng, M. LncRNA SNHG14 accelerates breast cancer progression through sponging miR-543 and regulating KLF7 expression. Arch Gynecol Obstet 305, 1507–1516 (2022). https://doi.org/10.1007/s00404-021-06300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06300-7

Keywords

Navigation