Skip to main content

Advertisement

Log in

Withaferin A abolishes the stem cell factor-stimulated pigmentation of human epidermal equivalents by interrupting the auto-phosphorylation of c-KIT in human melanocytes

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

We characterized the mechanism(s) underlying the abrogating effect of withaferin A (WFA) on the stem cell factor (SCF)-stimulated pigmentation of human epidermal equivalents (HEEs). Increased gene and protein expression levels of tyrosinase, tyrosinase-related protein1, dopachrome tautomerase, PMEL17, c-KIT and their targeted transcription factor, microphthalmia-associated transcription factor (MITF) were significantly reversed at days 7 and 10, respectively, by treatment with WFA. In WFA-treated normal human melanocytes (NHMs), there was a marked deficiency in the SCF-stimulated series of phosphorylations of c-KIT, Shc, Raf-1, MEK, ERK, MITF and CREB. Treatment with dithiothreitol (DTT) distinctly abolished the suppressive effect of WFA on the SCF-stimulated phosphorylation of c-KIT in NHMs. On the other hand, even after incubation at 4 °C for 2 h with 5 nM SCF, followed by the removal of unbound SCF by washing and then raising the temperature to 37 °C to start the signaling reaction, c-KIT was distinctly phosphorylated to a similar extent by incubation for 15 min with SCF only or with SCF + WFA. These findings indicate that WFA attenuates the SCF-induced activation of c-KIT in NHMs by interrupting the auto-phosphorylation of c-KIT through DTT-suppressible Michael addition thioalkylation reactions without interrupting the binding of SCF to the c-KIT receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

WFA:

Withaferin A

SCF:

Stem cell factor

EDN:

Endothelin

MSH:

Melanocyte stimulating hormone

HEE:

Human epidermal equivalent

MAPK:

Mitogen activated protein kinase

MITF:

Microphthalmia-associated transcription factor

NHM:

Normal human melanocyte

TYRP1:

Tyrosinase-related protein1

TYR:

Tyrosinase

DCT:

Dopachrome tautomerase

EDNBR:

Endothelin B receptor

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

PTCA:

Pyrrole-2,3,5-tricarboxylic acid

MBTH:

3-Methyl-2-benzothiazolinone hydrazine

DTT:

Dithiothreitol

BSA:

Bovine serum albumin

FM:

Fontana Masson

References

  1. Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, Urabe K, Hearing VJ (1995) Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci USA 92:1789–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Adams JD Jr, Yang J, Mishra LC, Singh BB (2002) Effects of Ashwagandha in a rat model of stroke. Altern Ther Health Med 8:18–19

    PubMed  Google Scholar 

  3. An SM, Koh JS, Boo YC (2010) p-Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother Res 24:1175–1180

    CAS  PubMed  Google Scholar 

  4. Ando H, Funasaka Y, Oka M, Ohashi A, Furumura M, Matsunaga J, Matsunaga N, Hearing VJ, Ichihashi M (1999) Possible involvement of proteolytic degradation of tyrosinase in the regulatory effect of fatty acids on melanogenesis. J Lipid Res 40:1312–1316

    CAS  PubMed  Google Scholar 

  5. Bentley NJ, Eisen T, Goding CR (1994) Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol 14:7996–8006

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Bernier M, Kwon YK, Pandey SK, Zhu TN, Zhao RJ, Maciuk A, He HJ, Decabo R, Kole S (2006) Binding of manumycin A inhibits IkappaB kinase beta activity. J Biol Chem 281:2551–2561

    Article  CAS  PubMed  Google Scholar 

  7. Bertolotto C, Buscà R, Abbe P, Bille K, Aberdam E, Ortonne JP, Ballotti R (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 18:694–702

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Blume-Jensen P, Claesson-Welsh L, Siegbahn A, Zsebo KM, Westermark B, Heldin CH (1991) Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J 10:4121–4128

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Cha SH, Ko SC, Kim D, Jeon YJ (2011) Screening of marine algae for potential tyrosinase inhibitor: those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. J Dermatol 38:354–363

    Article  CAS  PubMed  Google Scholar 

  10. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA 103:2274–2279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chung KW, Park YJ, Choi YJ, Park MH, Ha YM, Uehara Y, Yoon JH, Chun P, Moon HR, Chung HY (2012) Evaluation of in vitro and in vivo anti-melanogenic activity of a newly synthesized strong tyrosinase inhibitor (E)-3-(2,4 dihydroxybenzylidene)pyrrolidine-2,5-dione (3-DBP). Biochim Biophys Acta 1820:962–969

    Article  CAS  PubMed  Google Scholar 

  12. Codreanu SG, Adams DG, Dawson ES, Wadzinski BE, Liebler DC (2006) Inhibition of protein phosphatase 2A activity by selective electrophile alkylation damage. Biochemistry 45:10020–10029

    Article  CAS  PubMed  Google Scholar 

  13. Cutler RL, Liu L, Damen JE, Krystal G (1993) Multiple cytokines induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cells. J Biol Chem 268:21463–21465

    CAS  PubMed  Google Scholar 

  14. Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE (2003) MLANA/MART1and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol 163:333–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Emami S, Hosseinimehr SJ, Shahrbandi K, Enayati AA, Esmaeeli Z (2012) Synthesis and evaluation of 2(3H)-thiazole thiones as tyrosinase inhibitors. Arch Pharm 345:629–637

    Article  CAS  Google Scholar 

  16. Foley TD, Armstrong JJ, Kupchak BR (2004) Identification and H2O2 sensitivity of the major constitutive MAPK phosphatase from rat brain. Biochem Biophys Res Commun 315:568–574

    Article  CAS  PubMed  Google Scholar 

  17. Green H (1978) Cyclic AMP in relation to proliferation of the epidermal cell: new view. Cell 15:801–811

    Article  CAS  PubMed  Google Scholar 

  18. Hachiya A, Kobayashi A, Ohuchi A, Takema Y, Imokawa G (2001) The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet-B-induced pigmentation. J Invest Dermatol 116:578–586

    Article  CAS  PubMed  Google Scholar 

  19. Hachiya A, Kobayashi A, Yoshida Y, Kitahara T, Takema Y, Imokawa G (2004) Biphasic expression of two paracrine melanogenic cytokines, stem cell factor and endothelin-1, in ultraviolet B-induced human melanogenesis. Am J Pathol 165:2099–2109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hattori H, Kawashima M, Ichikawa Y, Imokawa G (2004) The epidermal stem cell factor is over-expressed in lentigo senilis: implication for the mechanism of hyperpigmentation. J Invest Dermatol 122:1256–1265

    Article  CAS  PubMed  Google Scholar 

  21. Hehner SP, Hofmann TG, Dröge W, Schmitz ML (1999) The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J Immunol 163:5617–5623

    CAS  PubMed  Google Scholar 

  22. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE (1998) MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391:298–301

    Article  CAS  PubMed  Google Scholar 

  23. Humphries KM, Deal MS, Taylor SS (2005) Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification. J Biol Chem 280:2750–2758

    Article  CAS  PubMed  Google Scholar 

  24. Imokawa G, Yada Y, Miyagishi M (1992) Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J Biol Chem 267:24675–24680

    CAS  PubMed  Google Scholar 

  25. Imokawa G, Miyagishi M, Yada Y (1995) Endothelin-1 as a new melanogen: coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J Invest Dermatol 105:32–37

    Article  CAS  PubMed  Google Scholar 

  26. Imokawa G, Yada Y, Kimura M (1996) Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem J 314:305–312

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Imokawa G, Kobayashi T, Miyagishi M, Higashi K, Yada Y (1997) The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Res 10:218–228

    Article  CAS  PubMed  Google Scholar 

  28. Imokawa G, Kobayasi T, Miyagishi M (2000) Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes. Cross-talk via trans-activation of the tyrosine kinase c-kit receptor. J Biol Chem 275:33321–33328

    Article  CAS  PubMed  Google Scholar 

  29. Ito S, Nakanishi Y, Valenzuela RK, Brilliant MH, Kolbe L, Wakamatsu K (2011) Usefulness of alkaline hydrogen peroxide oxidation to analyze eumelanin and pheomelanin in various tissue samples: application to chemical analysis of human hair melanins. Pigment Cell Mel Res 24:605–613

    Article  CAS  Google Scholar 

  30. Kadono S, Manak I, Kawashima M, Kobayashi T, Imokawa G (2001) The role of the epidermal endothelin cascade in the hyperpigmentation mechanism of lentigo senilis. J Invest Dermatol 116:571–577

    Article  CAS  PubMed  Google Scholar 

  31. Kaileh M, Vanden BW, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G (2007) Withaferin A strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264

    Article  CAS  PubMed  Google Scholar 

  32. Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9:202–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kray AE, Carter RS, Pennington KN, Gomez RJ, Sanders LE, Llanes JM, Llanes JM, Khan WN, Ballard DW, Wadzinski BE (2005) Positive regulation of IkappaB kinase signaling by protein serine/threonine phosphatase 2A. J Biol Chem 280:35974–35982

    Article  CAS  PubMed  Google Scholar 

  34. Lavie D, Glotter E, Shvo Y (1965) Constituents of withania somnifera. Dun. III. The side chain of withaferin A. J Org Chem 30:1774–1778

    Article  CAS  Google Scholar 

  35. Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M, Rönnstrand L (1999) Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene 18:5546–5553

    Article  CAS  PubMed  Google Scholar 

  36. Liang MC, Bardhan S, Li C, Pace EA, Porco JA Jr, Gilmore TD (2003) Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor kappaB by inhibiting the inhibitor of kappaB kinase. Mol Pharmacol 64:123–131

    Article  CAS  PubMed  Google Scholar 

  37. Liang MC, Bardhan S, Pace EA, Rosman D, Beutler JA, Porco JA Jr, Gilmore TD (2006) Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 71:634–645

    Article  CAS  PubMed  Google Scholar 

  38. Liu L, Damen JE, Cutler RL, Krystal G (1994) Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol 14:6926–6935

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Malik F, Singh J, Khajuria A, Suri KA, Satti NK, Singh S, Kaul MK, Kumar A, Bhatia A, Qazi GN (2007) A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 8:1525–1538

    Article  Google Scholar 

  40. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner BP, Rougas J, Pribluda VS (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesisn 7:115–122

    Article  CAS  Google Scholar 

  41. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 6:55–63

    Article  Google Scholar 

  42. Na HK, Surh YJ (2006) Transcriptional regulation via cysteine thiol modification: a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog 45:368–380

    Article  CAS  PubMed  Google Scholar 

  43. Nakajima H, Wakabayashi Y, Wakamatsu K, Imokawa G (2011) An extract of Melia toosendan attenuates endothelin-1-stimulated pigmentation in human epidermal equivalents through the interruption of PKC activity within melanocytes. Arch Dermatol Res 303:263–276

    Article  PubMed  Google Scholar 

  44. Nakajima H, Wakabayashi Y, Wakamatsu K, Imokawa G (2011) An extract of Withania somnifera attenuates endothelin-1-stimulated pigmentation in human epidermal equivalents through the interruption of PKC activity within melanocytes. Phytother Res 25:1398–1411

    CAS  PubMed  Google Scholar 

  45. Nakajima H, Fukazawa K, Wakabayashi Y, Wakamatsu K, Imokawa G (2012) Withania somnifera extract attenuates stem cell factor-stimulated pigmentation in human epidermal equivalents through interruption of ERK phosphorylation within melanocytes. J Nat Med 66:435–446

    Article  PubMed  Google Scholar 

  46. Nakajima H, Fukazawa K, Wakabayashi Y, Wakamatsu K, Senda K, Imokawa G (2012) Abrogating effect of a xanthophyll carotenoid astaxanthin on the stem cell factor-induced stimulation of human epidermal pigmentation. Arch Dermatol Res 304:803–816

    Article  CAS  PubMed  Google Scholar 

  47. Noh JM, Kwak SY, Kim DH, Lee YS (2007) Kojic acid-tripeptide amide as a new tyrosinase inhibitor. Biopolymers 88:300–307

    Article  CAS  PubMed  Google Scholar 

  48. Paine C, Sharlow E, Liebel F, Eisinger M, Shapiro S, Seiberg M (2001) An alternative approach to depigmentation by soybean extracts via inhibition of the PAR-2 pathway. J Invest Dermatol 116:587–595

    Article  CAS  PubMed  Google Scholar 

  49. Peyregne VP, Kar S, Ham SW, Wang M, Wang Z, Carr BI (2005) Novel hydroxyl naphthoquinones with potent Cdc25 antagonizing and growth inhibitory properties. Mol Cancer Ther 4:595–602

    Article  CAS  PubMed  Google Scholar 

  50. Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ (2000) Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 107:1–6

    Article  CAS  PubMed  Google Scholar 

  51. Prajapati S, Verma U, Yamamoto Y, Kwak YT, Gaynor RB (2004) Protein phosphatase 2Cbeta association with the IkappaB kinase complex is involved in regulating NF-kappaB activity. J Biol Chem 279:1739–1746

    Article  CAS  PubMed  Google Scholar 

  52. Prasanna KS, Shilpa P, Salimath BP (2009) Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor. Curr Trends Biotech Pharm 3:138–148

    CAS  Google Scholar 

  53. Rahmouni S, Cerignoli F, Alonso A, Tsutji T, Henkens R, Zhu C, Louis-dit-Sully C, Moutschen M, Jiang W, Mustelin T (2006) Loss of the VHR dual-specific phosphatase causes cell-cycle arrest and senescence. Nat Cell Biol 8:524–531

    Article  CAS  PubMed  Google Scholar 

  54. Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, Heintz NH, Heim J, Ho YS, Matthews DE, Wouters EF, Janssen-Heininger YM (2006) Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA 103:13086–13091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344

    Article  CAS  PubMed  Google Scholar 

  56. Rosazza JP, Nicholas AW, Gustafson ME (1978) Microbial transformations of natural antitumor agents. 7. 14-alpha-Hydroxylation of withaferin-A by Cunninghamella elegans (NRRL 1393). Steroids 31:671–679

    Article  CAS  PubMed  Google Scholar 

  57. Samadi AK, Cohen SM, Mukerji R, Chaguturu V, Zhang X, Timmermann BN, Cohen MS, Person EA (2012) Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumour Biol 33:1179–1189

    Article  CAS  PubMed  Google Scholar 

  58. Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T (2006) Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol 176:1899–1907

    Article  CAS  PubMed  Google Scholar 

  59. Sato-Jin K, Nishimura EK, Akasaka E, Huber W, Nakano H, Miller A, Du J, Wu M, Hanada K, Sawamura D, Fisher DE, Imokawa G (2008) Epistatic connections between MITF and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. FASEB J 22:1155–1168

    Article  CAS  PubMed  Google Scholar 

  60. Seth D, Rudolph J (2006) Redox regulation of MAP kinase phosphatase 3. Biochemistry 45:8476–8487

    Article  CAS  PubMed  Google Scholar 

  61. Shin HM, Lee YR, Chang YS, Lee JY, Kim BH, Min KR, Kim Y (2006) Suppression of interleukin-6 production in macrophages by furonaphthoquinone NFD-37. Int Immunopharmacol 6:916–923

    Article  CAS  PubMed  Google Scholar 

  62. Srinivasan S, Ranga RS, Burikhanov R, Han SS, Chendil D (2007) Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67:246–253

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki I, Cone RD, Im S, Nordlund J, Abdel-Malek ZA (1996) Binding of melanotropic hormones to the melanocortin receptor MC1R on human melanocytes stimulates proliferation and melanogenesis. Endocrinology 137:1627–1633

    CAS  PubMed  Google Scholar 

  64. Troppmair J, Bruder JT, App H, Cai H, Liptak L, Szeberényi J (1992) Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-1 and B-Raf protein serine kinases in the cytosol. Oncogene 7:1867–1873

    CAS  PubMed  Google Scholar 

  65. Ueda K, Usui T, Nakayama H, Ueki M, Takio K, Ubukata M, Osada H (2002) 4-Isoavenaciolide covalently binds and inhibits VHR, a dual-specificity phosphatase. FEBS Lett 525:48–52

    Article  CAS  PubMed  Google Scholar 

  66. Vasudevan SA, Skoko J, Wang K, Burlingame SM, Patel PN, Lazo JS, Nuchtern JG, Yang J (2005) MKP-8, a novel MAPK phosphatase that inhibits p38 kinase. Biochem Biophys Res Commun 330:511–518

    Article  CAS  PubMed  Google Scholar 

  67. Vontzalidou A, Zoidis G, Chaita E, Makropoulou M, Aligiannis N, Lambrinidis G, Mikros E, Skaltsounis AL (2012) Design, synthesis and molecular simulation studies of dihydrostilbene derivatives as potent tyrosinase inhibitors. Bioorg Med Chem Lett 22:5523–5526

    Article  CAS  PubMed  Google Scholar 

  68. Wan P, Hu Y, He L (2011) Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors. Mol Cell Biochem 354:241–246

    Article  CAS  PubMed  Google Scholar 

  69. Winder AJ, Harris H (1991) New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem 198:317–326

    Article  CAS  PubMed  Google Scholar 

  70. Wood KW, Sarnecki C, Roberts TM, Blenis J (1992) Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68:1041–1050

    Article  CAS  PubMed  Google Scholar 

  71. Yada Y, Higuchi K, Imokawa G (1991) Effects of endothelins on signal transduction and proliferation in human melanocytes. J Biol Chem 266:18352–18357

    CAS  PubMed  Google Scholar 

  72. Yang H, Shi G, Dou QP (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry. Mol Pharmacol 71:426–437

    Article  CAS  PubMed  Google Scholar 

  73. Yokota Y, Bargagna-Mohan P, Ravindranath PP, Kim KB, Mohan R (2006) Development of withaferin A analogs as probes of angiogenesis. Bioorg Med Chem Lett 16:2603–2607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Professor K. Wakamatsu for kindly providing PTCA standard. Shuko Terazawa designed the research study, performed the research and wrote the paper. Hiroaki Nakajima and Katsunori Fukasawa performed the research. Genji Imokawa designed the research study and wrote the paper.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genji Imokawa.

Additional information

S. Terazawa and H. Nakajima contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terazawa, S., Nakajima, H., Fukasawa, K. et al. Withaferin A abolishes the stem cell factor-stimulated pigmentation of human epidermal equivalents by interrupting the auto-phosphorylation of c-KIT in human melanocytes. Arch Dermatol Res 307, 73–88 (2015). https://doi.org/10.1007/s00403-014-1518-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1518-y

Keywords

Navigation