Skip to main content
Log in

Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The microphthalmia transcription factor (MITF) is discussed as the master gene for melanocytic survival and a key transcription factor regulating the expression of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). MITF is influenced in a complex manner by a large number of different extracellular and intracellular proteins. Many transcription factors are able to modulate the expression and/or transcriptional activity of MITF in vivo. In this review, we summarize these transcription factors that regulate MITF and their interactions. The Sry-related HMG box 10 (SOX10) can directly transactivate the MITF gene and cooperate with MITF to activate TRP-2 expression. The Paired box 3 (PAX3) can increase MITF expression by binding to its promoter and simultaneously prevent MITF from activating downstream genes by competition for enhancer occupancy. Activated signal transducer and activator of transcription 3 (STAT3) and protein inhibitor of activated STAT3 (PIAS3) are able to regulate transcriptional activity of MITF through their interaction. Activated cAMP response element binding protein (CREB) can bind the cAMP response element to increase the MITF gene expression. MITF expression can also be initiated by lymphoid-enhancing factor-1 (LEF-1) and be temporally facilitated by the synergy of LEF-1 and MITF. Both immunoglobulin transcription factor-2 (ITF2) and forkhead-box transcription factor D3 (FOXD3) can negatively regulate MITF expression. All the above-mentioned transcription factors constitute a regulatory network that precisely modulates the MITF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic helix-loop-helix zipper protein. Cell 74:395–404

    Article  CAS  PubMed  Google Scholar 

  2. Hughes MJ, Lingrel JB, Krakowsky JM, Anderson KP (1993) A helix-loop-helixtranscription factor-like gene is located at the mi locus. J Biol Chem 268:20687–20690

    CAS  PubMed  Google Scholar 

  3. Goding CR (2000) Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev 14:1712–1728

    CAS  PubMed  Google Scholar 

  4. Elworthy S, Lister JA, Carney TJ, Raible DW, Kelsh RN (2003) Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development 130:2809–2818

    Article  CAS  PubMed  Google Scholar 

  5. Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, Wegner M, Goossens M (2000) Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet 9:1907–1917

    Article  CAS  PubMed  Google Scholar 

  6. Sonnenblick A, Levy C, Razin E (2004) Interplay between MITF, PIAS3, and STAT3 in mast cells and melanocytes. Mol Cell Biol 24:10584–10592

    Article  CAS  PubMed  Google Scholar 

  7. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142:827–835

    Article  CAS  PubMed  Google Scholar 

  8. Saito H, Yasumoto K, Takeda K, Takahashi K, Fukuzaki A, Orikasa S, Shibahara S (2002) Melanocyte-specific microphthalmia-associated transcription factor isoform activates its own gene promoter through physical interaction with lymphoid-enhancing factor 1. J Biol Chem 277:28787–28794

    Article  CAS  PubMed  Google Scholar 

  9. Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ (2000) Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet 107:1–6

    Article  CAS  PubMed  Google Scholar 

  10. Lee M, Goodall J, Verastegui C, Ballotti R, Goding CR (2000) Direct regulation of the microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J Biol Chem 275:37978–37983

    Article  CAS  PubMed  Google Scholar 

  11. Verastegui C, Bille K, Ortonne JP, Ballotti R (2000) Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J Biol Chem 275:30757–33076

    Article  CAS  PubMed  Google Scholar 

  12. Jiao Z, Mollaaghababa R, Pavan WJ, Antonellis A, Green ED, Hornyak TJ (2004) Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res 17:352–362

    Article  CAS  PubMed  Google Scholar 

  13. Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, Shibahara S (2002) Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J 21:2703–2714

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe A, Takeda K, Ploplis B, Tachibana M (1998) Epistatic relationship between Waardenburg syndrome genes MITF and PAX3. Nat Genet 18:283–286

    Article  CAS  PubMed  Google Scholar 

  15. Lang D, Lu MM, Huang L, Engleka KA, Zhang M, Chu EY, Lipner S, Skoultchi A, Millar SE, Epstein JA (2005) Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 433:884–887

    Article  CAS  PubMed  Google Scholar 

  16. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  PubMed  Google Scholar 

  17. Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM, Irby R, Yeatman T, Courtneidge SA, Jove R (2001) Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 98:7319–7324

    Article  CAS  PubMed  Google Scholar 

  18. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  CAS  PubMed  Google Scholar 

  19. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF, Endo S, Johnson DE, Huang L, He Y, Kim JD (2000) Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci USA 97:4227–4232

    Article  CAS  PubMed  Google Scholar 

  20. Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R (2000) Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19:5419–5427

    Article  CAS  PubMed  Google Scholar 

  21. Dorvault CC, Weilbaecher KN, Yee H, Fisher DE, Chiriboga LA, Xu Y, Chhieng DC (2001) Microphthalmia transcription factor: a sensitive and specific marker for malignant melanoma in cytologic specimens. Cancer 93:337–343

    Article  CAS  PubMed  Google Scholar 

  22. Kamaraju AK, Bertolotto C, Chebath J, Revel M (2002) Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signaling. J Biol Chem 277:15132–15141

    Article  CAS  PubMed  Google Scholar 

  23. Boulon S, Dantonel JC, Binet V, Vié A, Blanchard JM, Hipskind RA, Philips A (2002) Oct-1 potentiates CREB-driven cyclin D1promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism. Mol Cell Biol 22:7769–7779

    Article  CAS  PubMed  Google Scholar 

  24. Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM (1998) Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest 101:2415–2426

    Article  CAS  PubMed  Google Scholar 

  25. Saha B, Singh SK, Sarkar C, Bera R, Ratha J, Tobin DJ, Bhadra R (2006) Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res 19:595–605

    Article  CAS  PubMed  Google Scholar 

  26. Mansky KC, Sankar U, Han J, Ostrowski MC (2002) Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem 277:11077–11083

    Article  CAS  PubMed  Google Scholar 

  27. Luger TA, Scholzen T, Grabbe S (1997) The role of alpha-melanocyte-stimulating hormone in cutaneous biology. J Investig Dermatol Symp Proc 2:87–93

    CAS  PubMed  Google Scholar 

  28. Slominski A, Wortsman J, Luger T, Paus R, Solomon S (2000) Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 80:979–1020

    CAS  PubMed  Google Scholar 

  29. Eastman Q, Grosschedl R (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr Opin Cell Biol 11:233–240

    Article  CAS  PubMed  Google Scholar 

  30. Takeda K, Yasumoto K, Takada R, Takada S, Watanabe K, Udono T, Saito H, Takahashi K, Shibahara S (2000) Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem 275:14013–14016

    Article  CAS  PubMed  Google Scholar 

  31. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  CAS  PubMed  Google Scholar 

  32. Furumura M, Potterf SB, Toyofuku K, Matsunaga J, Muller J, Hearing VJ (2001) Involvement of ITF2 in the transcriptional regulation of melanogenic genes. J Biol Chem 276:28147–28154

    Article  CAS  PubMed  Google Scholar 

  33. Hearing VJ (2000) The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res 13:23–34

    Article  PubMed  Google Scholar 

  34. Weigel D, Jäckle H (1990) The fork head domain: a novel DNA binding motif of eukaryotic transcription factors? Cell 63:455–456

    Article  CAS  PubMed  Google Scholar 

  35. Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA (2002) Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev 16:2650–2661

    Article  CAS  PubMed  Google Scholar 

  36. Tompers DM, Foreman RK, Wang Q, Kumanova M, Labosky PA (2005) Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Dev Biol 285:126–137

    Article  CAS  PubMed  Google Scholar 

  37. Teng L, Mundell NA, Frist AY, Wang Q, Labosky PA (2008) Requirement for Foxd3 in maintenance of neural crest progenitors. Development 135:1615–1624

    Article  CAS  PubMed  Google Scholar 

  38. Thomas AJ, Erickson CA (2009) FOXD3 regulates the lineage switch between neural crest-derived glial cells and pigment cells by repressing MITF through a non-canonical mechanism. Development 136:1849–1858

    Article  CAS  PubMed  Google Scholar 

  39. Ignatius MS, Moose HE, El-Hodiri HM, Henion PD (2008) colgate/hdac1 Repression of foxd3 expression is required to permit mitfa-dependent melanogenesis. Dev Biol 313:568–583

    Article  CAS  PubMed  Google Scholar 

  40. Curran K, Raible DW, Lister JA (2009) Foxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf. Dev Biol 332:408–417

    Article  CAS  PubMed  Google Scholar 

  41. Curran K, Lister JA, Kunkel GR, Prendergast A, Parichy DM, Raible DW (2010) Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest. Dev Biol 344:107–118

    Article  CAS  PubMed  Google Scholar 

  42. Fujii H, Hamada H (1993) A CNS-specific POU transcription factor, Brn-2, is required for establishing mammalian neural cell lineages. Neuron 11:1197–1206

    Article  CAS  PubMed  Google Scholar 

  43. Schreiber E, Merchant RE, Wiestler OD, Fontana A (1994) Primary brain tumors differ in their expression of octamer deoxyribonucleic acid-binding transcription factors from long-term cultured glioma cell lines. Neurosurgery 34:129–135

    Article  CAS  PubMed  Google Scholar 

  44. Eisen T, Easty DJ, Bennett DC, Goding CR (1995) The POU domain transcription factor Brn-2: elevated expression in malignant melanoma and regulation of melanocyte-specific gene expression. Oncogene 11:2157–2164

    CAS  PubMed  Google Scholar 

  45. Cox PM, Temperley SM, Kumar H, Goding CR (1988) A distinct octamer-binding protein present in malignant melanoma cells. Nucl Acids Res 16:11047–11056

    Article  CAS  PubMed  Google Scholar 

  46. Thomson JA, Parsons PG, Sturm RA (1993) In vivo and in vitro expression of octamer binding proteins in human melanoma metastases, brain tissue, and fibroblasts. Pigment Cell Res 6:13–22

    Article  CAS  PubMed  Google Scholar 

  47. Cook AL, Donatien PD, Smith AG, Murphy M, Jones MK, Herlyn M, Bennett DC, Leonard JH, Sturm RA (2003) Human melanoblasts in culture: expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3. J Invest Dermatol 121:1150–1159

    Article  CAS  PubMed  Google Scholar 

  48. Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R (2008) Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS One 3:e2734

    Article  PubMed  Google Scholar 

  49. Kobi D, Steunou AL, Dembélé D, Legras S, Larue L, Nieto L, Davidson I (2010) Genome-wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene. Pigment Cell Melanoma Res 23:404–418

    Article  CAS  PubMed  Google Scholar 

  50. Miller AJ, Levy C, Davis IJ, Razin E, Fisher DE (2005) Sumoylation of MITF and its related family members TFE3 and TFEB. J Biol Chem 280:146–155

    CAS  PubMed  Google Scholar 

  51. Haflidadóttir BS, Bergsteinsdóttir K, Praetorius C, Steingrímsson E (2010) miR-148 regulates Mitf in melanoma cells. PLoS ONE 5:e11574

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the two anonymous reviewers for constructive comments on the early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, P., Hu, Y. & He, L. Regulation of melanocyte pivotal transcription factor MITF by some other transcription factors. Mol Cell Biochem 354, 241–246 (2011). https://doi.org/10.1007/s11010-011-0823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0823-4

Keywords

Navigation