Skip to main content

Advertisement

Log in

Accuracy of biplanar linear radiography versus conventional radiographs when used for lower limb and implant measurements

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The current standard of care for measuring lower extremity length and angular discrepancies is using a full-length standing anteroposterior radiograph. However, there has been increasing interest to use biplanar linear EOS imaging as an alternative. This study aims to compare lower extremity length and implant measurements between biplanar linear and conventional radiographs.

Materials and methods

In this 5-year retrospective study, all patients who had a standing full-length anteroposterior and biplanar linear radiographs (EOS®) that include the lower extremities done within one year of each other were included. Patients who underwent surgery in between the imaging, underwent surgeries that could result in graduated length or angulated corrections and inadequate exposure of the lower extremity were excluded. Four radiographic segments were measured to assess lower limb alignment and length measurements. Height and width measurements of implants were performed for patients who had implants in both imaging.

Results

When comparing imaging and actual implant dimensions, biplanar linear radiographs were accurate in measuring actual implant height (median difference = − 0.14 cm, p = 0.66), and width (median difference = − 0.13 cm, p = 0.71). However, conventional radiographs were inaccurate in measuring actual implant height (median difference = 0.19 cm, p = 0.01) and width (median difference = 0.61 cm, p < 0.01). When comparing conventional and biplanar linear radiographs, there was statistically significant difference in all measurements. This includes anatomical femoral length (median difference = 3.53 cm, p < 0.01), mechanical femoral length (median difference = 3.89 cm, p < 0.01), anatomical tibial length (median difference = 2.34 cm, p < 0.01) and mechanical tibial length (median difference = 2.20 cm, p < 0.01).

Conclusion

First, there is a significant difference in the lower extremity length when comparing conventional and biplanar linear radiographs. Second, biplanar linear radiographs are found to be accurate while conventional radiographs are not as accurate in implant measurements of length and width in the lower extremity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MA:

Mechanical axis

AFL:

Anatomical femoral length

MFL:

Mechanical femoral length

ATL:

Anatomical tibial length

MTL:

Mechanical tibial length

HTO:

High tibial osteotomy

References

  1. Green WT, Anderson M (1955) The problem of unequal leg length. Pediatr Clin North Am. 2:1137–1155

    Article  Google Scholar 

  2. Gross RH (1978) Leg length discrepancy: how much is too much? Orthopedics 1(4):307–310

    Article  CAS  PubMed  Google Scholar 

  3. Rush WA, Steiner HA (1946) A study of lower extremity length inequality. Am J Roentgenol Radium Ther 56(5):616–623

    CAS  PubMed  Google Scholar 

  4. Song KM, Halliday SE, Little DG (1997) The effect of limb-length discrepancy on gait. J Bone Jt Surg Am 79(11):1690–1698

    Article  CAS  Google Scholar 

  5. Reina-Bueno M, Lafuente-Sotillos G, Castillo-Lopez JM et al (2017) Radiographic assessment of lower-limb discrepancy. J Am Podiatr Med Assoc 107(5):393–398

    Article  PubMed  Google Scholar 

  6. Sabharwal S, Zhao C, McKeon JJ et al (2006) Computed radiographic measurement of limb-length discrepancy. Full-length standing anteroposterior radiograph compared with scanogram. J Bone Jt Surg Am. 88(10):2243–2251

    Google Scholar 

  7. Paley D (2002) Principles of deformity correction, 1st edn. Springer Verlag, Berlin Heidelberg

    Book  Google Scholar 

  8. Jeon MR, Park HJ, Lee SY et al (2017) Radiation dose reduction in plain radiography of the full-length lower extremity and full spine. Br J Radiol 90(1080):20170483

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deschenes S, Charron G, Beaudoin G et al (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976) 35(9):989–994

    Article  Google Scholar 

  10. Dietrich TJ, Pfirrmann CW, Schwab A et al (2013) Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skeletal Radiol 42(7):959–967

    Article  PubMed  Google Scholar 

  11. Chaibi Y, Cresson T, Aubert B et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin 15(5):457–466

    Article  CAS  PubMed  Google Scholar 

  12. Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 189(2):287–297 (discussion 97-300)

    PubMed  Google Scholar 

  13. Humbert L, De Guise JA, Aubert B et al (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687

    Article  CAS  PubMed  Google Scholar 

  14. Lee KM, Chung CY, Park MS et al (2010) Reliability and validity of radiographic measurements in hindfoot varus and valgus. J Bone Jt Surg Am 92(13):2319–2327

    Article  Google Scholar 

  15. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1(1):30–46

    Article  Google Scholar 

  16. Melhem E, Assi A, El Rachkidi R, Ghanem I (2016) EOS((R)) biplanar X-ray imaging: concept, developments, benefits, and limitations. J Child Orthop 10(1):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  17. Escott BG, Ravi B, Weathermon AC et al (2013) EOS low-dose radiography: a reliable and accurate upright assessment of lower-limb lengths. J Bone Jt Surg Am 95(23):e1831–e1837

    Article  Google Scholar 

  18. Wybier M, Bossard P (2013) Musculoskeletal imaging in progress: the EOS imaging system. Jt Bone Spine 80(3):238–243

    Article  Google Scholar 

  19. Illes T, Tunyogi-Csapo M, Somoskeoy S (2011) Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J 20(1):135–143

    Article  PubMed  Google Scholar 

  20. Chiron P, Demoulin L, Wytrykowski K et al (2017) Radiation dose and magnification in pelvic X-ray: EOS imaging system versus plain radiographs. Orthop Traumatol Surg Res 103(8):1155–1159

    Article  CAS  PubMed  Google Scholar 

  21. Damet J, Fournier P, Monnin P et al (2014) Occupational and patient exposure as well as image quality for full spine examinations with the EOS imaging system. Med Phys 41(6):063901

    Article  CAS  PubMed  Google Scholar 

  22. Kalifa G, Charpak Y, Maccia C et al (1998) Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol 28(7):557–561

    Article  CAS  PubMed  Google Scholar 

  23. Bittersohl B, Freitas J, Zaps D et al (2013) EOS imaging of the human pelvis: reliability, validity, and controlled comparison with radiography. J Bone Jt Surg Am 95(9):e58

    Article  Google Scholar 

  24. Guenoun B, El Hajj F, Biau D et al (2015) Reliability of a new method for evaluating femoral stem positioning after total hip arthroplasty based on stereoradiographic 3D reconstruction. J Arthroplasty 30(1):141–144

    Article  PubMed  Google Scholar 

  25. Journe A, Sadaka J, Belicourt C, Sautet A (2012) New method for measuring acetabular component positioning with EOS imaging: feasibility study on dry bone. Int Orthop 36(11):2205–2209

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lazennec JY, Rousseau MA, Rangel A et al (2011) Pelvis and total hip arthroplasty acetabular component orientations in sitting and standing positions: measurements reproductibility with EOS imaging system versus conventional radiographies. Orthop Traumatol Surg Res 97(4):373–380

    Article  CAS  PubMed  Google Scholar 

  27. Clave A, Fazilleau F, Cheval D et al (2015) Comparison of the reliability of leg length and offset data generated by three hip replacement CAOS systems using EOS imaging. Orthop Traumatol Surg Res 101(6):647–653

    Article  CAS  PubMed  Google Scholar 

  28. Clave A, Maurer DG, Nagra NS et al (2018) Reproducibility of length measurements of the lower limb by using EOS. Musculoskelet Surg 102(2):165–171

    Article  CAS  PubMed  Google Scholar 

  29. Gheno R, Nectoux E, Herbaux B et al (2012) Three-dimensional measurements of the lower extremity in children and adolescents using a low-dose biplanar X-ray device. Eur Radiol 22(4):765–771

    Article  PubMed  Google Scholar 

  30. Krug KB, Weber C, Schwabe H et al (2014) Comparison of image quality using a X-ray stereotactical whole-body system and a direct flat-panel X-ray device in examinations of the pelvis and knee. Rofo 186(1):67–76

    CAS  PubMed  Google Scholar 

  31. Hau M, Menon D, Chan R, Chung K, Chau W, Ho K (2020) Two-dimensional/three-dimensional EOSTM imaging is reliable and comparable to traditional X-ray imaging assessment of knee osteoarthritis aiding surgical management. Knee 27(3):970–979

    Article  PubMed  Google Scholar 

  32. Wise KL, Kelly BJ, Agel J, Marette S, Macalena JA (2020) Reliability of EOS compared to conventional radiographs for evaluation of lower extremity deformity in adult patients. Skeletal Radiol 49(9):1423–1430. https://doi.org/10.1007/s00256-020-03425-9

    Article  PubMed  Google Scholar 

  33. Guggenberger R, Pfirrmann CW, Koch PP, Buck FM (2014) Assessment of lower limb length and alignment by biplanar linear radiography: comparison with supine CT and upright full-length radiography. AJR Am J Roentgenol 202(2):W161–W167. https://doi.org/10.2214/AJR.13.10782

    Article  PubMed  Google Scholar 

  34. Brouwer RW, Jakma TS, Bierma-Zeinstra SM et al (2003) The whole leg radiograph: standing versus supine for determining axial alignment. Acta Orthop Scand 74(5):565–568

    Article  PubMed  Google Scholar 

  35. Sabharwal S, Zhao C (2008) Assessment of lower limb alignment: supine fluoroscopy compared with a standing full-length radiograph. J Bone Jt Surg Am 90(1):43–51

    Article  Google Scholar 

  36. Specogna AV, Birmingham TB, Hunt MA et al (2007) Radiographic measures of knee alignment in patients with varus gonarthrosis: effect of weightbearing status and associations with dynamic joint load. Am J Sports Med 35(1):65–70

    Article  PubMed  Google Scholar 

  37. Winer BJ, Brown DR, Michels KM (1971) Statistical principles in experimental design. McGraw-Hill Humanities/Social Sciences/Languages, Michigan

  38. Cherian JJ, Kapadia BH, Banerjee S et al (2014) Mechanical, anatomical, and kinematic axis in TKA: concepts and practical applications. Curr Rev Musculoskelet Med 7(2):89–95

    Article  PubMed  PubMed Central  Google Scholar 

  39. Khattak MJ, Umer M, Davis ET et al (2010) Lower-limb alignment and posterior tibial slope in Parkistanis: a radiographic study. J Orthopaed Surg 18(1):22–25

    Article  Google Scholar 

  40. Domholdt E (2005) Statistical analysis of relationship. In: Domholdt E (ed) Rehabilitation research: principles and applications. Elseviers Saunders, St Louis, pp 351–363

    Google Scholar 

  41. Cohen J (1988) Statistical power analysis for the behavioral sciences. Routledge Academic, New York

    Google Scholar 

  42. Kim SB, Heo YM, Hwang CM et al (2018) Reliability of the EOS imaging system for assessment of the spinal and pelvic alignment in the sagittal plane. Clin Orthop Surg 10(4):500–507

    Article  PubMed  PubMed Central  Google Scholar 

  43. Green WT, Wyatt GM, Anderson M (1946) Orthoroentgenography as a method of measuring the bones of the lower extremities. J Bone Jt Surg Am 28:60–65

    CAS  Google Scholar 

  44. Horsfield D, Jones SN (1986) Assessment of inequality in length of the lower limb. Radiography 52(605):223–227

    CAS  PubMed  Google Scholar 

  45. Moseley CF (2000) Leg length discrepancy, Lippincott Williams & Wilkins, Philadelphia

  46. Sabharwal S, Kumar A (2008) Methods for assessing leg length discrepancy. Clin Orthop Relat Res 466(12):2910–2922

    Article  PubMed  PubMed Central  Google Scholar 

  47. Machen MS, Stevens PM (2005) Should full-length standing anteroposterior radiographs replace the scanogram for measurement of limb length discrepancy? J Pediatr Orthop B 14(1):30–37

    Article  PubMed  Google Scholar 

  48. Ribeiro CH, Mod MSB, Isch D, Baier C, Maderbacher G, Severino NR, Cataneo DC (2020) A novel device for greater precision and safety in open-wedge high tibial osteotomy: cadaveric study. Arch Orthop Trauma Surg 140(2):203–208. https://doi.org/10.1007/s00402-019-03300-w (Epub 2019 Nov 9 PMID: 31707483)

    Article  PubMed  Google Scholar 

  49. Tsuji M, Akamatsu Y, Kobayashi H, Mitsugi N, Inaba Y, Saito T (2020) Joint line convergence angle predicts outliers of coronal alignment in navigated open-wedge high tibial osteotomy. Arch Orthop Trauma Surg 140(6):707–715. https://doi.org/10.1007/s00402-019-03245-0 (Epub 2019 Aug 30 PMID: 31468134)

    Article  PubMed  Google Scholar 

  50. Vanhove F, Noppe N, Fragomen AT, Hoekstra H, Vanderschueren G, Metsemakers WJ (2019) Standardization of torsional CT measurements of the lower limbs with threshold values for corrective osteotomy. Arch Orthop Trauma Surg 139(6):795–805. https://doi.org/10.1007/s00402-019-03139-1 (Epub 2019 Feb 8 PMID: 30737593)

    Article  PubMed  Google Scholar 

  51. Ji W, Luo C, Zhan Y, Xie X, He Q, Zhang B (2019) A residual intra-articular varus after medial opening wedge high tibial osteotomy (HTO) for varus osteoarthritis of the knee. Arch Orthop Trauma Surg 139(6):743–750. https://doi.org/10.1007/s00402-018-03104-4 (Epub 2019 Jan 23 PMID: 30673869)

    Article  PubMed  Google Scholar 

  52. Schröter S, Nakayama H, Yoshiya S, Stöckle U, Ateschrang A, Gruhn J (2019) Development of the double level osteotomy in severe varus osteoarthritis showed good outcome by preventing oblique joint line. Arch Orthop Trauma Surg 139(4):519–527. https://doi.org/10.1007/s00402-018-3068-9 (Epub 2018 Nov 10 PMID: 30413943)

    Article  PubMed  Google Scholar 

  53. Kim MK, Lee SH, Kim ES et al (2011) The impact of sagittal balance on clinical results after posterior interbody fusion for patients with degenerative spondylolisthesis: a pilot study. BMC Musculoskelet Disord 12:69

    Article  PubMed  PubMed Central  Google Scholar 

  54. Takemoto M, Boissiere L, Vital JM et al (2017) Are sagittal spinopelvic radiographic parameters significantly associated with quality of life of adult spinal deformity patients? Multivariate linear regression analyses for pre-operative and short-term post-operative health-related quality of life. Eur Spine J 26(8):2176–2186

    Article  PubMed  Google Scholar 

  55. Ilharreborde B, Ferrero E, Alison M, Mazda K (2016) EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J 25(2):526–531

    Article  PubMed  Google Scholar 

  56. Hey HWD, Chan CX, Wong YM et al (2018) The effectiveness of full-body EOS compared with conventional chest X-ray in preoperative evaluation of the chest for patients undergoing spine operations: a preliminary study. Spine 43(21):1502–1511

    Article  PubMed  Google Scholar 

  57. Mahboub-Ahari A, Hajebrahimi S, Yusefi M, Velayati A (2016) EOS imaging versus current radiography: a health technology assessment study. Med J Islam Repub Iran 30:331

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Heng Sharon Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chua Chen Xi Kasia and Tan Si Heng Sharon are co-authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, C.X.K., Tan, S.H.S., Lim, A.K.S. et al. Accuracy of biplanar linear radiography versus conventional radiographs when used for lower limb and implant measurements. Arch Orthop Trauma Surg 142, 735–745 (2022). https://doi.org/10.1007/s00402-020-03700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-020-03700-3

Keywords

Navigation