Skip to main content
Log in

Influence of tibial hybrid fixation on graft tension and stability in ACL double-bundle reconstruction

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

Initial graft tension in anterior cruciate ligament (ACL) reconstruction affects stability and tension loss at follow-up. This study investigated the influence of hybrid tibial fixation in 3-tunnel double-bundle ACL reconstruction on initial graft tension and tension change and stability under anterior and combined rotatory loads.

Methods

Eleven fresh-frozen cadaveric knees were reconstructed with an ACL double bundle using a 3-tunnel technique. Grafts were tightened to 80 N in 60° (AM bundle) and 15° (PL bundle) of flexion. Anterior tibial translation under 134 N of anterior shear load and translation under combined rotatory and valgus loads (10 Nm valgus stress, 4 Nm internal tibial torque) were determined at 0°, 30°, 60°, and 90° flexion. In addition, graft tension under continuous passive motion was determined. Intact, ACL-resected and ACL-reconstructed joints with either tibial extracortical graft fixation or extracortical plus supplemental aperture graft fixation (hybrid fixation) were tested.

Results

Hybrid fixation did not increase graft tension in either bundle during fixation or in motion without additional load. AM-bundle tension increased (p < 0.05) at 0° under combined rotatory and valgus loads and at 30° and 60° under both loading conditions without decreasing the anterior tibial translation. PL-bundle tension increased (p < 0.05) only at 90° under combined rotatory and valgus loads.

Conclusions

Tibial hybrid fixation in 3-tunnel double-bundle ACL reconstruction increases time-zero AM- and PL-bundle tensions under loading conditions, generating greater construct stiffness. This could lead to a longer preservation of ACL-graft stability in clinical follow-up before bony incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zantop T, Petersen W, Sekiya JK et al (2006) Anterior cruciate ligament anatomy and function relating to anatomical reconstruction. Knee Surg Sports Traumatol Arthrosc 14:982–992. doi:10.1007/s00167-006-0076-z

    Article  PubMed  Google Scholar 

  2. Lind M, Menhert F, Pedersen AB (2012) Incidence and outcome after revision anterior cruciate ligament reconstruction: results from the Danish registry for knee ligament reconstructions. Am J Sports Med 40:1551–1557. doi:10.1177/0363546512446000

    Article  PubMed  Google Scholar 

  3. Mayr R, Rosenberger R, Agraharam D et al (2012) Revision anterior cruciate ligament reconstruction: an update. Arch Orthop Trauma Surg 132:1299–1313. doi:10.1007/s00402-012-1552-1

    Article  CAS  PubMed  Google Scholar 

  4. MARS Group, Wright RW, Huston LJ et al (2010) Descriptive epidemiology of the Multicenter ACL Revision Study (MARS) cohort. Am J Sports Med 38:1979–1986. doi:10.1177/0363546510378645

    Article  Google Scholar 

  5. Mei X, Zhang Z, Yang J (2016) Double-layer versus single-layer bone-patellar tendon-bone anterior cruciate ligament reconstruction: a prospective randomized study with 3-year follow-up. Arch Orthop Trauma Surg 136:1733–1739. doi:10.1007/s00402-016-2548-z

    Article  PubMed  Google Scholar 

  6. Jain V, Goyal A, Mohindra M et al (2016) A comparative analysis of arthroscopic double-bundle versus single-bundle posterior cruciate ligament reconstruction using hamstring tendon autograft. Arch Orthop Trauma Surg 136:1555–1561. doi:10.1007/s00402-016-2512-y

    Article  PubMed  Google Scholar 

  7. Tomihara T, Hashimoto Y, Taniuchi M, Shimada N (2015) Relationship between femoral tunnel location and graft bending angle in outside-in and transportal technique for ACL double bundle reconstruction in 3D-CT study. Arch Orthop Trauma Surg 135:839–846. doi:10.1007/s00402-015-2226-6

    Article  PubMed  Google Scholar 

  8. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43

    CAS  PubMed  Google Scholar 

  9. To JT, Howell SM, Hull ML (1999) Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy 15:379–387

    Article  CAS  PubMed  Google Scholar 

  10. Weimann A, Zantop T, Herbort M et al (2006) Initial fixation strength of a hybrid technique for femoral ACL graft fixation. Knee Surg Sports Traumatol Arthrosc 14:1122–1129. doi:10.1007/s00167-006-0159-x

    Article  PubMed  Google Scholar 

  11. Yoo JC, Ahn JH, Kim JH et al (2006) Biomechanical testing of hybrid hamstring graft tibial fixation in anterior cruciate ligament reconstruction. Knee 13:455–459. doi:10.1016/j.knee.2006.08.001

    Article  PubMed  Google Scholar 

  12. Fabbriciani C, Mulas PD, Ziranu F et al (2005) Mechanical analysis of fixation methods for anterior cruciate ligament reconstruction with hamstring tendon graft. An experimental study in sheep knees. Knee 12:135–138. doi:10.1016/j.knee.2004.05.001

    Article  PubMed  Google Scholar 

  13. Tetsumura S, Fujita A, Nakajima M, Abe M (2006) Biomechanical comparison of different fixation methods on the tibial side in anterior cruciate ligament reconstruction: a biomechanical study in porcine tibial bone. J Orthop Sci 11:278–282. doi:10.1007/s00776-006-1016-y

    Article  PubMed  Google Scholar 

  14. Walsh MP, Wijdicks CA, Parker JB et al (2009) A comparison between a retrograde interference screw, suture button, and combined fixation on the tibial side in an all-inside anterior cruciate ligament reconstruction: a biomechanical study in a porcine model. Am J Sports Med 37:160–167. doi:10.1177/0363546508323747

    Article  PubMed  Google Scholar 

  15. Au AG, Otto DD, Raso VJ, Amirfazli A (2005) Investigation of a hybrid method of soft tissue graft fixation for anterior cruciate ligament reconstruction. Knee 12:149–153. doi:10.1016/j.knee.2004.05.008

    Article  PubMed  Google Scholar 

  16. Prado M, Martín-Castilla B, Espejo-Reina A et al (2013) Close-looped graft suturing improves mechanical properties of interference screw fixation in ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:476–484. doi:10.1007/s00167-012-1975-9

    Article  PubMed  Google Scholar 

  17. Liu-Barba D, Howell SM, Hull ML (2007) High-stiffness distal fixation restores anterior laxity and stiffness as well as joint line fixation with an interference screw. Am J Sports Med 35:2073–2082. doi:10.1177/0363546507306162

    Article  PubMed  Google Scholar 

  18. Drews BH, Seitz AM, Huth J et al (2016) ACL double-bundle reconstruction with one tibial tunnel provides equal stability compared to two tibial tunnels. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-016-4199-6

    PubMed  Google Scholar 

  19. Dürselen L, Claes L, Kiefer H (1995) The influence of muscle forces and external loads on cruciate ligament strain. Am J Sports Med 23:129–136

    Article  PubMed  Google Scholar 

  20. Petersen W, Tretow H, Weimann A et al (2007) Biomechanical evaluation of two techniques for double-bundle anterior cruciate ligament reconstruction: one tibial tunnel versus two tibial tunnels. Am J Sports Med 35:228–234. doi:10.1177/0363546506294468

    Article  PubMed  Google Scholar 

  21. Kim S-G, Kurosawa H, Sakuraba K et al (2006) The effect of initial graft tension on postoperative clinical outcome in anterior cruciate ligament reconstruction with semitendinosus tendon. Arch Orthop Trauma Surg 126:260–264. doi:10.1007/s00402-005-0045-x

    Article  PubMed  Google Scholar 

  22. Balazs GC, Brelin AM, Grimm PD et al (2016) Hybrid tibia fixation of soft tissue grafts in anterior cruciate ligament reconstruction: a systematic review. Am J Sports Med 44:2724–2732. doi:10.1177/0363546515621541

    Article  PubMed  Google Scholar 

  23. Grover DM, Howell SM, Hull ML (2005) Early tension loss in an anterior cruciate ligament graft. A cadaver study of four tibial fixation devices. J Bone Joint Surg Am 87:381–390. doi:10.2106/JBJS.C.01527

    Article  PubMed  Google Scholar 

  24. Rhee PC, Levy BA, Stuart MJ et al (2011) A biomechanical comparison of the Delta screw and RetroScrew tibial fixation on initial intra-articular graft tension. Knee Surg Sports Traumatol Arthrosc 19:781–786. doi:10.1007/s00167-010-1366-z

    Article  PubMed  Google Scholar 

  25. Kim HY, Seo Y-J, Kim H-J et al (2011) Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy 27:1400–1408. doi:10.1016/j.arthro.2011.05.012

    Article  PubMed  Google Scholar 

  26. Ishibashi Y, Rudy TW, Livesay GA et al (1997) The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 13:177–182

    Article  CAS  PubMed  Google Scholar 

  27. Tsuda E, Fukuda Y, Loh JC et al (2002) The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy 18:960–967

    Article  PubMed  Google Scholar 

  28. Howard ME, Cawley PW, Losse GM, Johnston RB (1996) Bone-patellar tendon-bone grafts for anterior cruciate ligament reconstruction: the effects of graft pretensioning. Arthroscopy 12:287–292

    Article  CAS  PubMed  Google Scholar 

  29. Pilia M, Murray M, Guda T et al (2015) Pretensioning of soft tissue grafts in anterior cruciate ligament reconstruction. Orthopedics 38:e582–e587. doi:10.3928/01477447-20150701-55

    Article  PubMed  Google Scholar 

  30. Schatzmann L, Brunner P, Stäubli HU (1998) Effect of cyclic preconditioning on the tensile properties of human quadriceps tendons and patellar ligaments. Knee Surg Sports Traumatol Arthrosc 6(Suppl 1):S56–S61. doi:10.1007/s001670050224

    Article  PubMed  Google Scholar 

  31. Boguszewski DV, Joshi NB, Wang D et al (2015) Effect of different preconditioning protocols on anterior knee laxity after ACL reconstruction with four commonly used grafts. J Bone Joint Surg Am 97:1059–1066. doi:10.2106/JBJS.N.00665

    Article  PubMed  Google Scholar 

  32. Nurmi JT, Kannus P, Sievänen H et al (2004) Interference screw fixation of soft tissue grafts in anterior cruciate ligament reconstruction: part 2: effect of preconditioning on graft tension during and after screw insertion. Am J Sports Med 32:418–424

    Article  PubMed  Google Scholar 

  33. Mae T, Shino K, Matsumoto N et al (2006) Force sharing between two grafts in the anatomical two-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14:505–509. doi:10.1007/s00167-005-0014-5

    Article  PubMed  Google Scholar 

  34. Vercillo F, Woo SL-Y, Noorani SY, Dede O (2007) Determination of a safe range of knee flexion angles for fixation of the grafts in double-bundle anterior cruciate ligament reconstruction: a human cadaveric study. Am J Sports Med 35:1513–1520. doi:10.1177/0363546507300822

    Article  PubMed  Google Scholar 

  35. Sasaki Y, Chang S-S, Fujii M et al (2015) Effect of fixation angle and graft tension in double-bundle anterior cruciate ligament reconstruction on knee biomechanics. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3552-5

    Google Scholar 

  36. Koga H, Muneta T, Yagishita K et al (2012) The effect of graft fixation angles on anteroposterior and rotational knee laxity in double-bundle anterior cruciate ligament reconstruction: evaluation using computerized navigation. Am J Sports Med 40:615–623. doi:10.1177/0363546511426696

    Article  PubMed  Google Scholar 

  37. Murray PJ, Alexander JW, Gold JE et al (2010) Anatomic double-bundle anterior cruciate ligament reconstruction: kinematics and knee flexion angle-graft tension relation. Arthroscopy 26:202–213. doi:10.1016/j.arthro.2009.07.014

    Article  PubMed  Google Scholar 

  38. Lee JJ, Otarodifard K, Jun BJ et al (2011) Is supplementary fixation necessary in anterior cruciate ligament reconstructions? Am J Sports Med 39:360–365. doi:10.1177/0363546510390434

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Alwin-Jäger-Foundation. The instruments for the surgical preparation were sponsored by Arthrex (Freiham, Germany). All authors declare that there is no conflict of interest. The authors thank Alain Olivier for the graphic design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Drews.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the Alwin-Jäger-Foundation. The instruments for the surgical preparation were sponsored by Arthrex (Freiham, Germany).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drews, B.H., Seitz, A., Huth, J. et al. Influence of tibial hybrid fixation on graft tension and stability in ACL double-bundle reconstruction. Arch Orthop Trauma Surg 137, 981–988 (2017). https://doi.org/10.1007/s00402-017-2698-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2698-7

Keywords

Navigation