Skip to main content

Advertisement

Log in

Distinctive chaperonopathy in skeletal muscle associated with the dominant variant in DNAJB4

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

DnaJ homolog, subfamily B, member 4, a member of the heat shock protein 40 chaperones encoded by DNAJB4, is highly expressed in myofibers. We identified a heterozygous c.270 T > A (p.F90L) variant in DNAJB4 in a family with a dominantly inherited distal myopathy, in which affected members have specific features on muscle pathology represented by the presence of cytoplasmic inclusions and the accumulation of desmin, p62, HSP70, and DNAJB4 predominantly in type 1 fibers. Both Dnajb4F90L knockin and knockout mice developed muscle weakness and recapitulated the patient muscle pathology in the soleus muscle, where DNAJB4 has the highest expression. These data indicate that the identified variant is causative, resulting in defective chaperone function and selective muscle degeneration in specific muscle fibers. This study demonstrates the importance of DNAJB4 in skeletal muscle proteostasis by identifying the associated chaperonopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agbulut O, Destombes J, Thiesson D, Butler-Browne G (2000) Age-related appearance of tubular aggregates in the skeletal muscle of almost all male inbred mice. Histochem Cell Biol 114:477–481. https://doi.org/10.1007/s004180000211

    Article  CAS  Google Scholar 

  2. Andley UP, Hamilton PD, Ravi N, Weihl CC (2011) A knock-in mouse model for the R120G mutation of alphaB-crystallin recapitulates human hereditary myopathy and cataracts. PLoS One 6:e17671. https://doi.org/10.1371/journal.pone.0017671

    Article  CAS  Google Scholar 

  3. Anttonen A-K, Mahjneh I, Hämäläinen RH, Lagier-Tourenne C, Kopra O, Waris L et al (2005) The gene disrupted in Marinesco-Sjögren syndrome encodes SIL1, an HSPA5 cochaperone. Nat Genet 37:1309–1311. https://doi.org/10.1038/ng1677

    Article  CAS  Google Scholar 

  4. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M et al (2010) Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 20:143–148. https://doi.org/10.1016/j.cub.2009.11.022

    Article  CAS  Google Scholar 

  5. Augusto V, Padovani CR, Campos GER (2004) Skeletal muscle fiber types in C57BL6J mice. J Morphol Sci 21:89–94

    Google Scholar 

  6. Bengoechea R, Findlay AR, Bhadra AK, Shao H, Stein KC, Pittman SK et al (2020) Inhibition of DNAJ-HSP70 interaction improves strength in muscular dystrophy. J Clin Invest 130:4470–4485. https://doi.org/10.1172/JCI136167

    Article  CAS  Google Scholar 

  7. Blumen SC, Astord S, Robin V, Vignaud L, Toumi N, Cieslik A et al (2012) A rare recessive distal hereditary motor neuropathy with HSJ1 chaperone mutation. Ann Neurol 71:509–519. https://doi.org/10.1002/ana.22684

    Article  CAS  Google Scholar 

  8. Bugiardini E, Rossor AM, Lynch DS, Swash M, Pittman AM, Blake JC et al (2017) Homozygous mutation in HSPB1 causing distal vacuolar myopathy and motor neuropathy. Neurol Genet 3:e168. https://doi.org/10.1212/nxg.0000000000000168

    Article  CAS  Google Scholar 

  9. Caplan AJ (2003) What is a co-chaperone? Cell Stress Chaperones 8:105–107. https://doi.org/10.1379/1466-1268(2003)008%3c0105:wiac%3e2.0.co;2

    Article  Google Scholar 

  10. Celichowski J, Grottel K (1993) Twitch/tetanus ratio and its relation to other properties of motor units. NeuroReport 5:201–204. https://doi.org/10.1097/00001756-199312000-00003

    Article  CAS  Google Scholar 

  11. Cohen E, Bonne G, Rivier F, Hamroun D (2021) The 2022 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord 31:1313–1357. https://doi.org/10.1016/j.nmd.2021.11.004

    Article  Google Scholar 

  12. Dirk KP, Zheng M, Pinkert S, Vecchi G, Ciryam P et al (2015) Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161:919–932. https://doi.org/10.1016/j.cell.2015.03.032

    Article  CAS  Google Scholar 

  13. Ederle H, Funk C, Abou-Ajram C, Hutten S, Funk EBE, Kehlenbach RH et al (2018) Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1. Sci Rep. https://doi.org/10.1038/s41598-018-25007-5

    Article  Google Scholar 

  14. French RL, Grese ZR, Aligireddy H, Dhavale DD, Reeb AN, Kedia N et al (2019) Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J Biol Chem 294:6696–6709. https://doi.org/10.1074/jbc.ra118.005889

    Article  CAS  Google Scholar 

  15. Fuentealba RA, Udan M, Bell S, Wegorzewska I, Shao J, Diamond MI et al (2010) Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J Biol Chem 285:26304–26314. https://doi.org/10.1074/jbc.m110.125039

    Article  CAS  Google Scholar 

  16. Ghaoui R, Palmio J, Brewer J, Lek M, Needham M, Evilä A et al (2016) Mutations in HSPB8 causing a new phenotype of distal myopathy and motor neuropathy. Neurology 86:391–398. https://doi.org/10.1212/wnl.0000000000002324

    Article  CAS  Google Scholar 

  17. Gonzaga-Jauregui C, Harel T, Gambin T, Kousi M, Griffin LB, Francescatto L et al (2015) Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep 12:1169–1183. https://doi.org/10.1016/j.celrep.2015.07.023

    Article  CAS  Google Scholar 

  18. Hackman P, Sarparanta J, Lehtinen S, Vihola A, Evilä A, Jonson PH et al (2013) Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann Neurol 73:500–509. https://doi.org/10.1002/ana.23831

    Article  CAS  Google Scholar 

  19. Harms MB, Sommerville RB, Allred P, Bell S, Ma D, Cooper P et al (2012) Exome sequencing reveals DNAJB6 mutations in dominantly-inherited myopathy. Ann Neurol 71:407–416. https://doi.org/10.1002/ana.22683

    Article  CAS  Google Scholar 

  20. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. https://doi.org/10.1038/nature10317

    Article  CAS  Google Scholar 

  21. Head SI, Arber MB (2013) An active learning mammalian skeletal muscle lab demonstrating contractile and kinetic properties of fast- and slow-twitch muscle. Adv Physiol Educ 37:405–414. https://doi.org/10.1152/advan.00155.2012

    Article  CAS  Google Scholar 

  22. Hiraga K, Inoue YU, Asami J, Hotta M, Morimoto Y, Tatsumoto S et al (2020) Redundant type II cadherins define neuroepithelial cell states for cytoarchitectonic robustness. Commun Biol 3:574. https://doi.org/10.1038/s42003-020-01297-2

    Article  CAS  Google Scholar 

  23. Iida A, Takano K, Takeshita E, Abe-Hatano C, Hirabayashi S, Inaba Y et al (2019) A novel PAK3 pathogenic variant identified in two siblings from a Japanese family with X-linked intellectual disability: case report and review of the literature. Cold Spring Harb Mol Case Stud 5:a003988. https://doi.org/10.1101/mcs.a003988

    Article  Google Scholar 

  24. Inoue M, Iida A, Noguchi S, Nonaka I, Nishino I (2017) Comprehensive genome analysis of Japanese patients with myofibrillar myopathy. Neuromuscul Disord 27:S120. https://doi.org/10.1016/j.nmd.2017.06.103

    Article  Google Scholar 

  25. Inoue M, Noguchi S, Sonehara K, Nakamura-Shindo K, Taniguchi A, Kajikawa H et al (2021) A recurrent homozygous ACTN2 variant associated with core myopathy. Acta Neuropathol 142:785–788. https://doi.org/10.1007/s00401-021-02363-7

    Article  CAS  Google Scholar 

  26. Inoue M, Uchino S, Iida A, Noguchi S, Hayashi S, Takahashi T et al (2019) COX6A2 variants cause a muscle-specific cytochrome c oxidase deficiency. Ann Neurol 86:193–202. https://doi.org/10.1002/ana.25517

    Article  CAS  Google Scholar 

  27. Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129. https://doi.org/10.1016/0022-510x(73)90023-3

    Article  CAS  Google Scholar 

  28. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592. https://doi.org/10.1038/nrm2941

    Article  CAS  Google Scholar 

  29. Kedia N, Arhzaouy K, Pittman SK, Sun Y, Batchelor M, Weihl CC et al (2019) Desmin forms toxic, seeding-competent amyloid aggregates that persist in muscle fibers. Proc Natl Acad Sci USA 116:16835–16840. https://doi.org/10.1073/pnas.1908263116

    Article  CAS  Google Scholar 

  30. Klaips CL, Jayaraj GG, Hartl FU (2018) Pathways of cellular proteostasis in aging and disease. J Cell Biol 217:51–63. https://doi.org/10.1083/jcb.201709072

    Article  CAS  Google Scholar 

  31. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 10:205–215. https://doi.org/10.1016/j.arr.2010.02.001

    Article  CAS  Google Scholar 

  32. Küsters B, Van Hoeve BJA, Schelhaas HJ, Ter Laak H, Van Engelen BGM, Lammens M (2009) TDP-43 accumulation is common in myopathies with rimmed vacuoles. Acta Neuropathol 117:209–211. https://doi.org/10.1007/s00401-008-0471-2

    Article  Google Scholar 

  33. Lee Y, Jonson PH, Sarparanta J, Palmio J, Sarkar M, Vihola A et al (2018) TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J Clin Invest 128:1164–1177. https://doi.org/10.1172/jci97103

    Article  Google Scholar 

  34. Lualdi M, Alberio T, Fasano M (2020) Proteostasis and proteotoxicity in the network medicine era. Int J Mol Sci 21:6405. https://doi.org/10.3390/ijms21176405

    Article  CAS  Google Scholar 

  35. Lupo V, Aguado C, Knecht E, Espinos C (2016) Chaperonopathies: spotlight on hereditary motor neuropathies. Front Mol Biosci 3:81. https://doi.org/10.3389/fmolb.2016.00081

    Article  CAS  Google Scholar 

  36. Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C et al (2017) TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95:808-816.e809. https://doi.org/10.1016/j.neuron.2017.07.025

    Article  CAS  Google Scholar 

  37. Malicdan MC, Noguchi S, Hayashi YK, Nonaka I, Nishino I (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15:690–695. https://doi.org/10.1038/nm.1956

    Article  CAS  Google Scholar 

  38. Malicdan MC, Noguchi S, Nishino I (2009) Monitoring autophagy in muscle diseases. Methods Enzymol 453:379–396. https://doi.org/10.1016/S0076-6879(08)04019-6

    Article  CAS  Google Scholar 

  39. MéJat A, Decostre VR, Li J, Renou L, Kesari A, Hantaï D et al (2009) Lamin A/C–mediated neuromuscular junction defects in Emery-Dreifuss muscular dystrophy. J Cell Biol 184:31–44. https://doi.org/10.1083/jcb.200811035

    Article  CAS  Google Scholar 

  40. Mercuri E, Jungbluth H, Muntoni F (2005) Muscle imaging in clinical practice: diagnostic value of muscle magnetic resonance imaging in inherited neuromuscular disorders. Curr Opin Neurol 18:526–537. https://doi.org/10.1097/01.wco.0000183947.01362.fe

    Article  Google Scholar 

  41. Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F (2007) Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 25:433–440. https://doi.org/10.1002/jmri.20804

    Article  Google Scholar 

  42. Milone M, Liewluck T (2019) The unfolding spectrum of inherited distal myopathies. Muscle Nerve 59:283–294. https://doi.org/10.1002/mus.26332

    Article  Google Scholar 

  43. Moore CW, Beveridge TS, Rice CL (2017) Fiber type composition of the palmaris brevis muscle: implications for palmar function. J Anat 231:626–633. https://doi.org/10.1111/joa.12652

    Article  CAS  Google Scholar 

  44. Morelli FF, Verbeek DS, Bertacchini J, Vinet J, Mediani L, Marmiroli S et al (2017) Aberrant compartment formation by HSPB2 Mislocalizes Lamin A and compromises nuclear integrity and function. Cell Rep 20:2100–2115. https://doi.org/10.1016/j.celrep.2017.08.018

    Article  CAS  Google Scholar 

  45. Noguchi S, Ogawa M, Malicdan MC, Nonaka I, Nishino I (2017) Muscle weakness and fibrosis due to cell autonomous and non-cell autonomous events in collagen VI deficient congenital muscular dystrophy. EBioMedicine 15:193–202. https://doi.org/10.1016/j.ebiom.2016.12.011

    Article  Google Scholar 

  46. Olivé M, Winter L, Fürst DO, Schröder R (2020) 246th ENMC International Workshop: protein aggregate myopathies 24–26 May 2019, Hoofddorp, The Netherlands. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2020.11.003

    Article  Google Scholar 

  47. Palmio J, Jonson PH, Inoue M, Sarparanta J, Bengoechea R, Savarese M et al (2019) Mutations in the J domain of DNAJB6 cause dominant distal myopathy. Neuromuscul Disord. https://doi.org/10.1016/j.nmd.2019.11.005

    Article  Google Scholar 

  48. Polla B (2004) Respiratory muscle fibres: specialisation and plasticity. Thorax 59:808–817. https://doi.org/10.1136/thx.2003.009894

    Article  CAS  Google Scholar 

  49. Quijano-Roy S, Carlier RY, Fischer D (2011) Muscle imaging in congenital myopathies. Semin Pediatr Neurol 18:221–229. https://doi.org/10.1016/j.spen.2011.10.003

    Article  Google Scholar 

  50. Round JM, Jones DA, Chapman SJ, Edwards RHT, Ward PS, Fodden DL (1984) The anatomy and fibre type composition of the human adductor pollicis in relation to its contractile properties. J Neurol Sci 66:263–272. https://doi.org/10.1016/0022-510X(84)90015-7

    Article  CAS  Google Scholar 

  51. Sandell S, Huovinen S, Palmio J, Raheem O, Lindfors M, Zhao F et al (2016) Diagnostically important muscle pathology in DNAJB6 mutated LGMD1D. Acta Neuropathol Commun 4:9. https://doi.org/10.1186/s40478-016-0276-9

    Article  CAS  Google Scholar 

  52. Sandell SM, Mahjneh I, Palmio J, Tasca G, Ricci E, Udd BA (2013) ‘Pathognomonic’ muscle imaging findings in DNAJB6 mutated LGMD1D. Eur J Neurol 20:1553–1559. https://doi.org/10.1111/ene.12239

    Article  CAS  Google Scholar 

  53. Sarparanta J, Jonson PH, Golzio C, Sandell S, Luque H, Screen M et al (2012) Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy. Nat Genet 44(450–455):S451-452. https://doi.org/10.1038/ng.1103

    Article  CAS  Google Scholar 

  54. Sarparanta J, Jonson PH, Kawan S, Udd B (2020) Neuromuscular diseases due to chaperone mutations: a review and some new results. Int J Mol Sci 21:1409. https://doi.org/10.3390/ijms21041409

    Article  CAS  Google Scholar 

  55. Sato T, Hayashi YK, Oya Y, Kondo T, Sugie K, Kaneda D et al (2013) DNAJB6 myopathy in an Asian cohort and cytoplasmic/nuclear inclusions. Neuromuscul Disord 23:269–276. https://doi.org/10.1016/j.nmd.2012.12.010

    Article  Google Scholar 

  56. Savarese M, Sarparanta J, Vihola A, Jonson PH, Johari M, Rusanen S et al (2020) Panorama of the distal myopathies. Acta Myol 39:245–265. https://doi.org/10.36185/2532-1900-028

    Article  CAS  Google Scholar 

  57. Selcen D (2011) Myofibrillar myopathies. Neuromuscul Disord 21:161–171. https://doi.org/10.1016/j.nmd.2010.12.007

    Article  Google Scholar 

  58. Selcen D, Muntoni F, Burton BK, Pegoraro E, Sewry C, Bite AV et al (2009) Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol 65:83–89. https://doi.org/10.1002/ana.21553

    Article  CAS  Google Scholar 

  59. Senderek J, Krieger M, Stendel C, Bergmann C, Moser M, Breitbach-Faller N et al (2005) Mutations in SIL1 cause Marinesco-Sjögren syndrome, a cerebellar ataxia with cataract and myopathy. Nat Genet 37:1312–1314. https://doi.org/10.1038/ng1678

    Article  CAS  Google Scholar 

  60. Smith DA, Carland CR, Guo Y, Bernstein SI (2014) Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec (Hoboken) 297:1637–1649. https://doi.org/10.1002/ar.22980

    Article  CAS  Google Scholar 

  61. Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21:1332–1340. https://doi.org/10.1038/s41593-018-0235-9

    Article  CAS  Google Scholar 

  62. Stefani M (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim Biophys Acta 1739:5–25. https://doi.org/10.1016/j.bbadis.2004.08.004

    Article  CAS  Google Scholar 

  63. Stein KC, Bengoechea R, Harms MB, Weihl CC, True HL (2014) Myopathy-causing mutations in an HSP40 chaperone disrupt processing of specific client conformers. J Biol Chem 289:21120–21130. https://doi.org/10.1074/jbc.M114.572461

    Article  CAS  Google Scholar 

  64. Terry EE, Zhang X, Hoffmann C, Hughes LD, Lewis SA, Li J et al (2018) Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. Elife. https://doi.org/10.7554/elife.34613

    Article  Google Scholar 

  65. Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97:643–663. https://doi.org/10.1007/s00421-006-0238-1

    Article  Google Scholar 

  66. van Oosten-Hawle P, Porter RS, Morimoto RI (2013) Regulation of organismal proteostasis by transcellular chaperone signaling. Cell 153:1366–1378. https://doi.org/10.1016/j.cell.2013.05.015

    Article  CAS  Google Scholar 

  67. Vicart P, Caron A, Guicheney P, Li Z, Prévost M-C, Faure A et al (1998) A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20:92–95. https://doi.org/10.1038/1765

    Article  CAS  Google Scholar 

  68. Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20:2447–2460. https://doi.org/10.1007/s00330-010-1799-2

    Article  Google Scholar 

  69. Weihl CC, Töpf A, Bengoechea R, Duff J, Charlton R, Garcia SK et al (2022) Loss of function variants in DNAJB4 cause a myopathy with early respiratory failure. Acta Neuropathol. https://doi.org/10.1007/s00401-022-02510-8

    Article  Google Scholar 

  70. Weihl CC, Udd B, Hanna M, ENMC workshop study group (2018) 234th ENMC International Workshop: chaperone dysfunction in muscle disease Naarden, The Netherlands, 8–10 December 2017. Neuromuscul Disord 28:1022–1030. https://doi.org/10.1016/j.nmd.2018.09.004

    Article  Google Scholar 

  71. Williams DR, Reardon K, Roberts L, Dennet X, Duff R, Laing NG et al (2005) A new dominant distal myopathy affecting posterior leg and anterior upper limb muscles. Neurology 64:1245–1254. https://doi.org/10.1212/01.wnl.0000156524.95261.b9

    Article  CAS  Google Scholar 

  72. Yamazawa T, Kobayashi T, Kurebayashi N, Konishi M, Noguchi S, Inoue T et al (2021) A novel RyR1-selective inhibitor prevents and rescues sudden death in mouse models of malignant hyperthermia and heat stroke. Nat Commun. https://doi.org/10.1038/s41467-021-24644-1

    Article  Google Scholar 

  73. Yonekawa T, Malicdan MC, Cho A, Hayashi YK, Nonaka I, Mine T et al (2014) Sialyllactose ameliorates myopathic phenotypes in symptomatic GNE myopathy model mice. Brain 137:2670–2679. https://doi.org/10.1093/brain/awu210

    Article  Google Scholar 

  74. Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S (2021) Molecular and cellular pathways contributing to brain aging. Behav Brain Funct 17:6. https://doi.org/10.1186/s12993-021-00179-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for their cooperation. We also thank Hisayoshi Nakamura, Keiko Hiraki-Kamon, and Keiko Ishikawa for technical assistance. This study was supported by the Intramural Research Grant for Neurological and Psychiatric Disorders of the National Center of Neurology and Psychiatry under Grant Numbers 2-5 (S.H., I.N.), 2-6 (S.N.), 3-8 (M.T.), and 3-9 (S.N.); KAKENHI (19K17021) from the Japan Society for the Promotion of Science (M.I.); Japan Agency for Medical Research and Development under Grant Numbers 22ek0109490h0003 (A.I., S.H., S.N., I.N.); and NIH under Grant Numbers, NIH R01AR068797 (C.C.W.) and K24AR073317 (C.C.W.).

Author information

Authors and Affiliations

Authors

Contributions

MI, SN, and IN designed and oversaw this study. MI, SN, YUI, AI, MO, RB, SKP, and TI performed the experiments. MI, SN, AI, and CCW analyzed the data. MI, KW, YH, TS, MT, YO, YT, and HM provided the samples and clinical data. MI, SN, and CCW wrote the manuscript. All the authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Satoru Noguchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1247 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, M., Noguchi, S., Inoue, Y.U. et al. Distinctive chaperonopathy in skeletal muscle associated with the dominant variant in DNAJB4. Acta Neuropathol 145, 235–255 (2023). https://doi.org/10.1007/s00401-022-02530-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02530-4

Navigation