Skip to main content
Log in

Synthesis and characterization of 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles and the using of Reactive Orange 16 dye in adsorption and photocatalytic decolorization

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Adsorption and photocatalytic decolorization methods were used to remove Reactive Orange 16 dye from textile wastewater by using ethyleneglycoldimethacrylate and 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles with magnetic synthesized by suspension polymerization. The characterization of the synthesized m-poly(EGDMA-VTA)-TiO2 particules were carried out by using XRD, FTIR, SEM–EDS-elemental mapping, ESR, and BET analyses. Both adsorption and photocatalytic decolorization processes of RO16 dye were applied to the polymer particles. The effects of solution pH, amount of adsorbent, initial dye concentration, temperature, and time on the adsorption capacity were investigated. The removal of R016 dye reached a maximum at pH 3. Dye substance removal decreased due to increasing temperature and adsorbent amount. As a result of experimental studies, the adsorption of RO16 dye was explained by the Langmuir isotherm, while its kinetics was stated by a pseudo-second-order mechanism. Additionally, thermodynamic functions (ΔHo, ΔGo, and ΔSo) have been determined. At the end of adsorption, the decolorization kinetics were elucidated by examining the adsorbent amount, time, and dye concentration parameters for the photocatalytic decolorization of non-adsorbed dyes. It was determined that the photocatalytic activity was highest at low dye concentration and high photocatalyst content. Additionally, it was determined that decolorization kinetics studies were compatible with the Langmuir–Hinshelwood model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

This declaration is “not applicable.”

Abbreviations

C e :

Concentration of RO16 at equilibrium (mg L−1)

C 0 :

Initial concentration of RO16 in solution of RO16 (mg L−1)

E a :

Activation energy of adsorption (kJ mol−1)

E fe :

Free energy of adsorption (kJ mol−1)

∆G :

Gibbs free energy of adsorption (J mol−1)

∆H :

Isosteric enthalpy of adsorption (J mol−1)

∆S :

Entropy change of the adsorption process (J mol−1 K−1)

R:

The gas constant (J mol−1 K−1)

q e :

The amount of RO16 adsorbed on the adsorbent at equilibrium (mg g−1)

q t :

The amount of RO16 adsorbed on the adsorbent at any time (mg g−1)

q m :

The maximum amount of RO16 adsorbed per unit mass adsorbent (mg g−1)

Q L :

The maximum amount of RO16 ions adsorbed per unit mass adsorbent (mg g−1)

K L :

The Langmuir constant related to the affinity of binding sites (mL mg−1)

n :

The heterogenity factor

K F :

The Freundlich constant (mg g−1) (L mg−1)1/n

QD-R :

The maximum amount of RO16 adsorbed per unit mass adsorbent (mg g−1)

K D-R :

The Dubinin-Radushkevich constant (mol2 J−2)

ε :

The polanyi potential (J mol−1)

R L :

The dimensionless separation factor

k 1 :

The rate constant of pseudo-first-order adsorption (min−1)

k 2 :

The rate constant of pseudo-second-order adsorption ((g mg−1) min−1)

k0 :

Independent temperature factor ((g mg−1) min−1)

k R :

The rate constant for the modified Ritchie second-order model (min−1)

k dif :

The intraparticle diffusion rate constant (mg (g min0.5)−1)

R 2 :

Linear regression coefficient

t :

Time (min)

T :

Temperature (K)

kapp :

The apparent first-order rate constant (min−1)

Kr :

The reaction rate (mg (L min)−1)

Ks :

The adsorption constant (L mg−1)

References

  1. Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, Jiao H, Fu Y, Sun J (2022) Ecotoxicol Environ Saf. https://doi.org/10.1016/J.ECOENV.2021.113160

    Article  PubMed  Google Scholar 

  2. Chandanshive V, Kadam S, Rane N, Jeon BH, Jadhav J, Govindwar S (2020) Chemosphere. https://doi.org/10.1016/J.CHEMOSPHERE.2020.126513

    Article  PubMed  Google Scholar 

  3. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103248

  4. Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Int J Curr Microbiol App Sci. 3(2):670

  5. Artifon W, Cesca K, de Andrade CJ, Ulson de Souza AA, de Oliveira D (2021) Process Biochem. https://doi.org/10.1016/J.PROCBIO.2021.10.030

    Article  Google Scholar 

  6. Benkhaya S, Harfi SE, Harfi AE (2017) App J Environ Eng Sci. https://doi.org/10.48422/IMIST.PRSM/ajees-v3i3.9681

  7. Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM (2007) Biores Technol. https://doi.org/10.1016/j.biortech.2006.08.020

  8. Haroun AA, Abdelghaffar F, Hakeim OA (2021) Biointerf Res Appl Chem. https://doi.org/10.33263/BRIAC114.1165311665

  9. Alghamdi AA, Al-Odayni A-B, Saeed WS, Almutairi MS, Alharthi FA, Aouak T, Al-Kahtani A (2019) Molecules. https://doi.org/10.3390/molecules24203685

    Article  PubMed  PubMed Central  Google Scholar 

  10. Oliveira GAR, Ferraz ERA, Chequer FMD, Grando MD, Angeli JPF, Tsuboy MS, Marcarini JC, Mantovani MS, Osugi ME, Lizier TM, Zanoni MVB, Oliveira DP (2010) Mutation Research/Genetic Toxicology and Environmental Mutagenesis. https://doi.org/10.1016/J.MRGENTOX.2010.09.001

    Article  Google Scholar 

  11. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Adv Coll Interface Sci. https://doi.org/10.1016/J.CIS.2014.04.002

    Article  Google Scholar 

  12. Wijannarong S, Aroonsrimorakot S, Thavipoke P, Kumsopa C, Sangjan S (2013) APCBEE Procedia. https://doi.org/10.1016/j.apcbee.2013.05.048

  13. Saitoh T, Shibata K, Hiraide M (2014) J Environ Chem Engin. https://doi.org/10.1016/J.JECE.2014.08.005

    Article  Google Scholar 

  14. Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K (2002) Dyes Pigments. https://doi.org/10.1016/S0143-7208(01)00078-X

    Article  Google Scholar 

  15. Gupta VK (2009) Suhas. J Environ Manage. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  PubMed  Google Scholar 

  16. Ram C, Pareek RK, Singh V (2012) Inter J Theor App Sci 4(2):82

    Google Scholar 

  17. Ledakowicz S, Paździor K (2021) Molecules. https://doi.org/10.3390/molecules26040870

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cebeci MS, Selçuk SF (2020) Academic Platform Journal of Engineering and Science 8(3):533

    Google Scholar 

  19. Danish MSS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, Ahmadi M, Nazari M, Wali M, Zaheb H, Senjyu T (2021) Metals. https://doi.org/10.3390/met11010080

  20. Zhang P, Wang T, Chang X, Gong J (2016) Acc Chem Res. https://doi.org/10.1021/acs.accounts.6b00036

    Article  PubMed  PubMed Central  Google Scholar 

  21. Elgohary EA, Mahmoud Mohamed YA, HA el Nazer HA, Baaloudj O, Alyami MSS, el Jery A, Amine Assadi A, Amrane A, Comparelli R (2021) Catalysts. https://doi.org/10.3390/catal11121498

  22. Li W, Wang J, He G, Yu L, Noor N, Sun Y, Zhou X, Hu J, Parkin IP (2017) J Mater Chem. https://doi.org/10.1039/c6ta09116d

  23. Elhadj M, Samira A, Mohamed T, Djawad F, Asma A, Djamel N (2020) Sep Sci Technol. https://doi.org/10.1080/01496395.2019.1577896

    Article  Google Scholar 

  24. Li M, Zhao H, Lu ZY (2020) Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2019.109774

    Article  Google Scholar 

  25. Sawut A, Wu T, Simayi R, Wu T, Gong X, Wang Z (2023) Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2023.132531

    Article  Google Scholar 

  26. Uzun L, Kara A, Tüzmen N, Karabakan A, Beşirli N, Denizli A (2006) J App Poly Sci. https://doi.org/10.1002/app.24830

    Article  Google Scholar 

  27. Kara A (2004) J Hazar Mater. https://doi.org/10.1016/j.jhazmat.2003.08.016

    Article  Google Scholar 

  28. Yalçın Ş, Kara A, Demirel S (2022) Univ J Natural Appl Sci. https://doi.org/10.19113/sdufenbed.982112

  29. Malega F, Indrayana PT, Suharyadi E (2018) Journal Ilmiah Pendidikan Fisika Al-BiRuNi. https://doi.org/10.24042/jipfalbiruni.v7i2.2913

  30. Thamaphat K, Limsuwan P, Ngotawornchai B (2008) Agriculture and Natural Resources 42(5):357

    Google Scholar 

  31. Özel Ş (2019) Master's thesis, Bursa Uludağ Üniversitesi

  32. Denizli A, Arpa Ç, Bektas S, Genç Ö (2002) Adsorpt Sci Technol. https://doi.org/10.1260/026361702760120953

    Article  Google Scholar 

  33. Kara A, Demirbel E, Tekin N, Osman B, Beşirli N (2015) J Hazar Mater. https://doi.org/10.1016/J.JHAZMAT.2014.12.011

    Article  Google Scholar 

  34. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Pure Appl Chem. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  35. Kara A, Demirbel E (2011) Water Air Soil Pollut. https://doi.org/10.1007/s11270-011-1032-1

  36. Rouquerol J, Baron G, Denoyel R, Giesche H, Groen J, Klobes P, Levitz P, Neimark AV, Rigby S, Skudas R, Sing K, Thommes M (2012) K. Unger. Pure Appl Chem. https://doi.org/10.1351/PAC-REP-10-11-19

    Article  Google Scholar 

  37. Benhouria A, Islam MA, Zaghouane-Boudiaf H, Boutahala M, Hameed BH (2015) Chem Engineer J. https://doi.org/10.1016/j.cej.2015.02.030

    Article  Google Scholar 

  38. Panda SK, Aggarwal I, Kumar H, Prasad L, Kumar A, Sharma A, Vo DVN, Thuan DV, Mishra V (2021) Environ Chem Lett. https://doi.org/10.1007/s10311-020-01173-9

    Article  Google Scholar 

  39. Kheradmand A, Negarestani M, Kazemi S, Shayesteh H, Javanshir S, Ghiasinejad H (2022) Sci Rep. https://doi.org/10.1038/s41598-022-19056-0

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rápó E, Tonk S (2021) Molecules. https://doi.org/10.3390/molecules26175419

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kannusamy P, Sivalingam T (2013) Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2013.03.015

  42. Albroomi H, Elsayed M, Baraka A, Abdelmaged M (2015) J Turk Chem Soc Section A Chem. 2(1):17

  43. Kara A (2009) J App Poly Sci. https://doi.org/10.1002/app.29169

    Article  Google Scholar 

  44. Errais E, Duplay J, Darragi F, M’Rabet I, Aubert A, Huber F, Morvan G (2011) Desalination. https://doi.org/10.1016/J.DESAL.2011.02.031

    Article  Google Scholar 

  45. Lagergren S (1898) Handlingar 25(4):1

    Google Scholar 

  46. Ho YS, McKay G (1999) Process Biochem. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  47. Wu F-C, Tseng R-L, Juang R-S (2009) Chem Engineer J. https://doi.org/10.1016/j.cej.2009.04.042

    Article  Google Scholar 

  48. Can N, Ömür BC, Altındal A (2016) Anadolu Univ J Sci Technol A- Appl Sci Eng. https://doi.org/10.18038/aubtda.266443

  49. Abualnaja KM, Alprol AE, Abu-Saied MA, Ashour M, Mansour AT (2021) Sustainability. https://doi.org/10.3390/su13137077

    Article  Google Scholar 

  50. Osman B, Özer ET, Kara A, Güçer Ş, Beşirli N (2012) J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2012.03.069

    Article  PubMed  Google Scholar 

  51. Langmuir I (1918) J Am Chem Soc. https://doi.org/10.1021/JA02242A004/ASSET/JA02242A004.FP.PNG_V03

    Article  Google Scholar 

  52. Freundlich HMF (1906) J Phys Chem 57:385

    CAS  Google Scholar 

  53. Sarı A, Tuzen M (2009) J Hazar Mater. https://doi.org/10.1016/j.jhazmat.2008.09.047

    Article  Google Scholar 

  54. Tassist A, Lounici H, Abdi N, Mameri N (2010) J Hazar Mater. https://doi.org/10.1016/j.jhazmat.2010.06.078

  55. Namasivayam C, Kavitha D (2002) Dyes Pigm. https://doi.org/10.1016/s0143-7208(02)00025-6

    Article  Google Scholar 

  56. Ebelegi A, Ayawei N, Wankasi D (2020) Open J Phys Chem. https://doi.org/10.4236/ojpc.2020.103010

  57. Özcan A, Ömeroǧlu Ç, Erdoǧan Y, Özcan AS (2007) J Hazar Mater. https://doi.org/10.1016/J.JHAZMAT.2006.06.138

  58. Wu CH (2007) J Hazar Mater. https://doi.org/10.1016/J.JHAZMAT.2006.09.083

    Article  Google Scholar 

  59. Kansal SK, Hassan Ali A, Kapoor S (2010) Desalination. https://doi.org/10.1016/J.DESAL.2010.04.017

  60. Chekir N, Tassalit D, Benhabiles O, Kasbadji Merzouk N, Ghenna M, Abdessemed A, Issaadi R (2017) Int J Hydr Energy https://doi.org/10.1016/j.ijhydene.2016.11.057

  61. Lahmar H, Benamira M, Akika FZ, Trari M (2017) J Phys Chem Solids. https://doi.org/10.1016/J.JPCS.2017.06.021

    Article  Google Scholar 

  62. Khezrianjoo S, Revanasiddappa HD (2012) Chem Sci J. CSJ-85

  63. Asenjo NG, Santamaría R, Blanco C, Granda M, Álvarez P, Menéndez R (2013) Carbon. https://doi.org/10.1016/j.carbon.2012.12.010

    Article  Google Scholar 

  64. Ohtani B (2011) Advances in Inorganic Chem. https://doi.org/10.1016/b978-0-12-385904-4.00001-9

    Article  Google Scholar 

  65. Doğdu G (2022) Nanocatalyst Düzce University. J Sci Technol 10:1998

    Google Scholar 

Download references

Acknowledgements

The authors thank Tübitak for their support. A patent application has been filed for this study (TurkPatent 2022/018576, PCT/TR2023/050372).

Funding

This research is supported by Bursa Uludağ University General Research Project numbered FGA-2021–656. It was carried out in cooperation with Bursa Uludağ University and BUTEKOM Bursa Technology Coordination and R&D Center within the scope of Tübitak 2244 PhD Project (Project number: 119C122) in the Fields of Sustainability in Textiles and Composite Materials.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: G.K.M: Literature review, experimental studies, preparation of graphics, writing A.K: Subject determination, analysis, data analysis, writing and general coordination, N.T: experimental design, manuscript editing, S.D writing editing, preparation of references and the article in a format suitable for the journal. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sibel Demirel.

Ethics declarations

Ethics approval

This declaration is “not applicable.”

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutlu, G.K., Kara, A., Tekin, N. et al. Synthesis and characterization of 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles and the using of Reactive Orange 16 dye in adsorption and photocatalytic decolorization. Colloid Polym Sci 302, 623–642 (2024). https://doi.org/10.1007/s00396-023-05213-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05213-y

Keywords

Navigation