Skip to main content
Log in

Control of the rheological properties of concentrated aqueous MXene sediment suspensions using polymeric additives

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

MXenes constitute a new class of two-dimensional materials and have received considerable attention in the past decade from researchers in a wide variety of fields. In this study, we showed that the rheological properties of the concentrated (50 wt%) colloidal suspensions of the MXene sediment can be easily controlled by various water-soluble polymers to facilitate their solution processing in practical applications. The viscosity of the initially gelled polymer-free suspension at low shear rates was reduced by several orders of magnitudes by adding nonionic, anionic, and cationic polymers that can adsorb on the particle surface. The cationic poly(diallyldimethylammonium chloride) (PDDA) afforded the highest reduction in viscosity, attributed to the decrease in the undesirable face-to-edge electrostatic attraction between the MXenes. The PDDA-doped concentrated suspensions exhibited remarkably low viscosities and elastic moduli and thus can be applied to spray coating process without clogging even at high particle loadings.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Naguib M, MOchalin VN, Barsoum MW, Gogotsi Y (2014) XenesM: A New Family of Two-dimensinoal Materials. Adv Mater 26:992–1005

  2. Gogotsi Y, Anasori B (2019) The Rise of MXenes. ACS Nano 13:8491–8494

    Article  CAS  PubMed  Google Scholar 

  3. Vahidmohammadi A, Rosen J, Gogotsi Y (2021) The World of Two-dimensional Carbides and Nitrdies. Science 372:6547

    Article  Google Scholar 

  4. Chaudhari NK, Jin H, Kim B, Baek DS, Joo SH, Lee K (2014) MXene: An Emerging Two-dimensional Material for Future Energy Conversion and Storage Applications. Adv Mater 26:992–1005

    Google Scholar 

  5. Murali G, Rawal J, Modigunta JKR, Park YH, Lee JH, Lee SY, Park SJ, In I (2021) A Review on MXenes: New-Generation 2D Materials for Supercapacitors, Sustain. Energy Fuels 5:5672–5693

    CAS  Google Scholar 

  6. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y (2016) Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science 353:1137–1140

    Article  CAS  PubMed  Google Scholar 

  7. Iqbal A, Shahzad F, Hantanasirisakul K, Kim MK, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, Koo CM (2020) Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti3CNTx (MXene). Science 369:446–450

    Article  CAS  PubMed  Google Scholar 

  8. Sokolov A, Ali M, Li H, Jeon YR, Ko MJ, Choi C (2021) Partially Oxidized MXene Ti3C2Tx Sheets for Memristor Having Synapse and Threshold Resistive Switching Characteristics. Adv Electron Mater 7:2000866

    Article  CAS  Google Scholar 

  9. Khot AC, Dongale TD, Park JH, Kesavan AV, Kim TG (2021) Ti3C2-Based MXene Oxide Nanosheets for Resistive Memory and Synaptic Learning Applications. ACS Appl Mater Interfaces 13:5216–5227

    Article  CAS  PubMed  Google Scholar 

  10. Ling Z, Ren CE, Zhao MQ, Gogotsi Y (2014) Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc Natl Acad Sci USA 111:16676–16681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jimmy J, Kandasubramanian B (2020) MXene Functionalized Polymer Composites: Synthesis and Applications. Eur Polym J 122:109367

    Article  CAS  Google Scholar 

  12. Wyatt BC, Nemani SK, Anasori B (2021) 2D Transition Metal Carbides (MXenes) in Metal and Ceramic Matrix Composites. Nano Converg 8:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT (2018) Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 12:986–993

    Article  CAS  PubMed  Google Scholar 

  14. Ho DH, Choi YY, Jo SB, Myoung JM, Cho JH (2021) Sensing with MXenes: Progress and Prospects. Adv Mater 33:2005846

    Article  CAS  Google Scholar 

  15. Zhong Q, Li Y, Zhang G (2021) Two-dimensional MXene-based and MXene-derived Photocatalysts: Recent Developments and Perspectives. Chem Eng J 409:128099

    Article  CAS  Google Scholar 

  16. You Z, Liao Y, Li X, Fan J, Xiang Q (2021) State-of-the-art Recent Progress in MXene-based Photocatalysts: A Comprehensive Review. Nanoscale 13:9463–9504

    Article  CAS  PubMed  Google Scholar 

  17. Petukhov DI, Kan AS, Chumakov AP, Konovalov OV, Valeev RG, Eliseev AA (2021) MXene-based Gas Separation Membranes with Sorption Type Selectivity. J Membr Sci 621:218994

    Article  Google Scholar 

  18. Li J, Li X, Bruggen BV (2020) An MXene-based Membrane for Molecular Separation. Environ Sci Nano 7:1289–1304

  19. Karahan HE, Goh K, Zhang C, Yang E, Yildirim C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz SB, Chen Y, Bae T-H (2020) MXene Materials for Designing Advanced Separation Membranes. Adv Mater 32:1906697

    Article  CAS  Google Scholar 

  20. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA (2016) Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 10:3674–3684

    Article  CAS  PubMed  Google Scholar 

  21. Dwivedi N, Dhand C, Kumar P, Srivastava AK (2021) Emergent 2D Materials for Combating Infectious Diseases: the Potential of MXenes and MXene-Graphene Composites to Fight Against Pandemics. Mater Adv 2:2892–2905

    Article  CAS  Google Scholar 

  22. Zhao J, Yang Y, Yang C, Tian Y, Han Y, Liu J, Yin X, Que X (2018) A Hydrophobic Surface Enabled Salt-Blocking 2D Ti3C2 MXene Membrane for Efficient and Stable Solar Desalination. J Mater Chem A 33:16196–16204

    Article  Google Scholar 

  23. Xu D, Li Z, Li L, Wang J (2020) Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Adv Func Mater 30:2000712

    Article  CAS  Google Scholar 

  24. Liu Y, Zhao J, Zhang S, Li D, Zhang X, Zhao Q, Xing B (2022) Advances and Challenges of Broadband Solar Absorbers for Efficient Solar Steam Generation. Environ Sci Nano 9:2264–2296

  25. Aslfattahi N, Samylingam L, Abdelrazik AS, Arifutzzaman A, Saidur R (2020) MXene Based New Class of Silicone Oil Nanofluids for the Performance Improvement of Concentrated Photovoltaic Thermal Collector. Sol Energy Mater Sol Cells 211:110526

    Article  CAS  Google Scholar 

  26. Bao Z, Bing N, Zhu X, Xie H, Yu W (2021) TI3C2Tx MXene Contained Nanofluids with High Thermal Conductivity, Super Colloidal Stability and Low Viscosity. Chem Eng J 406:126390

    Article  CAS  Google Scholar 

  27. Ambreen T, Saleem A, Park CW (2022) Thermal Efficiency of Eco-Friendly MXene Based Nanofluid for Performance Enhancement of a Pin-Fin Heat Sink: Experimental and Numerical Analyses. Int J Heat Mass Transf 186:122451

    Article  CAS  Google Scholar 

  28. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644

    Article  CAS  Google Scholar 

  29. Abdolhosseinzadeh S, Schneider R, Verma A, Heler J, Nuesch F, Zhang C (2020) Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screen-Printed Micro-Supercapacitors. Adv Mater 32:2000716

    Article  CAS  Google Scholar 

  30. Xu H, Zhu W, Sun F, Qi H, Zou J, Laine R, Ding W (2021) Turning Trash into Treasure: MXene with Intrinsic LiF Solid Electrolyte Interfaces Performs Better and Better During Battery Cycling. Adv Mater Technol 6:2000882

    Article  CAS  Google Scholar 

  31. Ma J, Yang K, Jiang Y, Shen L, Ma H, Cui Z, Du Y, Lin J, Liu J, Zhu N (2022) Integrating MXene Waste Materials into Value-added Products for Smart Wearable Self-powered Healthcare Monitoring. Cell Rep Phys Sci 3:100908

    Article  CAS  Google Scholar 

  32. Yuan M, Wang L, Liu X, Du X, Zhang G, Chang Y, Xia Q, Hu Q, Zhou A (2023) 3D Printing Quasi-Solid-State Micro-Supercapacitors with Ultrahigh Areal Energy Density Based on High Concentration MXene Sediment. Chem Eng J 451:138686

    Article  CAS  Google Scholar 

  33. Peng YY, Akuzum B, Kurra N, Zhao MQ, Alhabeb M, Anasori B, Kumbur EC, Alshareef HN, Ger MD, Gogotsi Y (2016) All-MXene (2D titanium carbide) Solid-State Microsupercapacitors for On-Chip Energy Storage. Energy Environ Sci 9:2847–2854

    Article  CAS  Google Scholar 

  34. Couly C, Alhabeb M, Van Aken KL, Kurra N, Gomes L, Navarro-Suarez AM, Anasori B, Alshareef HN, Gogotsi Y (2018) Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor. Adv Electron Mater 4:1700339

    Article  Google Scholar 

  35. Hantanasirisakul K, Zhao MQ, Urbankowski P, Halim J, Anasori B, Kota S, Ren CE, Barsoum MW, Gogotsi Y (2016) Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv Electron Mater 2:1600050

    Article  Google Scholar 

  36. Zhang YZ, Wang Y, Jiang Q, El-Demellawi JK, Kim H, Alshareef  HN (2020) MXene Printing and Patterned Coating for Device Applications. Adv Mater 1908486

  37. Aydin E, El-Demellawi JK, Yarali E, Aljamaan F, Sansoni S, Rehman A, Harrison G, Kang J, Labban AE, Bastiani MD, Razzaq A, Kerschaver EV, Allen TG, Mahammed OF, Anthopoulos T, Alshareef HN, Wolf SD (2022) Scaled Deposition of Ti3C2Tx MXene on Complex Surfaces: Application Assessment as Rear Electrodes for Silicon Heterojunction Solar Cells. ACS Nano 16:2419–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dillon AD, Ghidiu MJ, Krick AL, Griggs J, May SJ, Gogotsi Y, Barsoum MW, Fafarman AT (2016) Highly Conductive Optical Quality Solution-Processes Films of 2D Titanium Carbide. Adv Func Mater 26:4162–4168

    Article  CAS  Google Scholar 

  39. Uzun S, Schelling M, Hantanasirisakul K, Mathis TS, Askeland R, Dion G, Gogotsi Y (2021) Additive-Free Aqueous MXene Inks for Thermal Inkjet Printing on Textiles. Small 17:2006376

    Article  CAS  Google Scholar 

  40. Zhang C, Mckeon L, Kremer MP, Park SH, Ronan O, Seral-Ascaso A, Barwich S, Coileain CO, McEvoy N, Nerl HC, Anasori B, Coleman JN, Gogotsi Y, Nicolosi V (2019) Additive-free MXene Inks and Direct Printing of Micro-supercapacitors. Nat Commun 10:1795

    Article  PubMed  Google Scholar 

  41. Orangi J, Hamade F, Davis VA, Beidaghi M (2020) 3D Printing of Additive-Free 2D Ti3C2Tx (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. ACS Nano 14:640–650

    Article  CAS  PubMed  Google Scholar 

  42. Yang W, Yang J, Byun JJ, Moissinac FP, Xu J, Haigh SJ, Domingos M, Bissett MA, Dryfe RAW, Barg S (2019) 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors. Adv Mater 31:1902725

    Article  Google Scholar 

  43. Eom W, Shin H, Ambade RB, Lee SH, Lee KH, Kang DJ, Han TH (2020) Large-scale Wet-spinning of Highly Electroconductive MXene Fibers. Nat Commun 11:2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lim S, Park H, Yang J, Kwak C, Lee J (2019) Stable Colloidal Dispersion of Octylated Ti3C2-MXenes in a Nonpolar Solvent. Colloids Surf A 579:123648

    Article  CAS  Google Scholar 

  45. Maleski K, Mochalin VN, Gogotsi Y (2017) Dispersion of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chem Mater 29:1632–1640

    Article  CAS  Google Scholar 

  46. Zhang Q, Lai H, Fan R, Ji P, Fu X, Li H (2021) High Concentration of Ti3C2Tx MXene in Organic Solvent. ACS Nano 15:5249–5262

    Article  CAS  PubMed  Google Scholar 

  47. Akuzum B, Maleski K, Anasori B, Lelyukh P, Alvarez NJ, Kumbur EC, Gogotsi Y (2018) Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes. ACS Nano 12:2685–2694

    Article  CAS  PubMed  Google Scholar 

  48. Tezel GB, Arole K, Holta DE, Radovic M, Green MJ (2022) Interparticle Interactions and Rheological Signatures of Ti3C2Tz MXene Dispersions. J Colloid Interface Sci 605:120–128

    Article  CAS  PubMed  Google Scholar 

  49. Wei TS, Fan FY, Helal A, Smith KC, McKinley GH, Chiang YM, Lewis JA (2015) Biphasic Electrode Suspensions for Li-Ion Semi-solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow. Adv Energy Mater 5:1500535

    Article  Google Scholar 

  50. Zhang L, Wu X, Qian W, Zhang H, Zhang S (2021) Lithium Slurry Flow Cell, a Promising Device for the Future Energy Storage, Green. Energy Environ 6:5–8

    CAS  Google Scholar 

  51. Rueb CJ, Zukoski CF (1997) Viscoelastic Properties of Colloidal Gels. J Rheol 41:197–218

    Article  CAS  Google Scholar 

  52. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T (2021) An Updated Review of Nanofluids in Various Heat Transfer Devices. J Therm Anal Calorim 145:2817–2872

    Article  CAS  Google Scholar 

  53. Nielsen LE (1973) Thermal Conductivity of Particulate-Filled Polymers. J Appl Polym Sci 17:3819–3820

    Article  Google Scholar 

  54. Asakura S, Oosawa F (1958) Interaction Between Particles Suspended in Solutions. J Polym Sci 33:183–192

    Article  CAS  Google Scholar 

  55. Tuinier R, Rieger J, de Kruif CG (2003) Depletion-Induced Phase Separation in Colloid-Polymer Mixture. Adv Colloid Interface Sci 103:1–31

    Article  CAS  PubMed  Google Scholar 

  56. Zhulina EB, Borisov OV, Priamitsyn VA (1990) Theory of Steric Stabilization of Colloid Dispersions by Grafted Polymers. J Colloid Interface Sci 137:495–511

    Article  CAS  Google Scholar 

  57. Guo X, Ballauff M (2001) Spherical Polyelectrolyte Brushes: Comparison Between Annealed and Quanched Brushes. Phys Rev E 64:051406

    Article  CAS  Google Scholar 

  58. Lim S, Park H, Kim JH, Yang J, Kwak C, Kim J, Ryu SY, Lee J (2020) Polyelectrolyte-grafted Ti3C2-MXenes Stable in Extreme Salinity Aquatic Conditions for Remediation of Contaminated Subsurface Environments. RSC Adv 10:25966–25978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Larson RG (1999) The Structure and Rheology of Complex Fluids. Oxford University Press, New York

    Google Scholar 

  60. Krieger IM, Dougherty TJ (1959) A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  61. Batchelor GK (1977) The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles. J Fluid Mech 83:97–117

    Article  Google Scholar 

  62. Russel WB (1980) Review of the Role of Colloidal Forces in the Rheology of Suspensions. J Rheol 287:287–316

    Article  Google Scholar 

  63. Shoaib M, Khan S, Wani OB, Abdala A, Seiphoori A, Bobicki ER (2022) Modulation of Soft Glassy Dynamics in Aqueous Suspensions of an Anisotropic Charged Swelling Clay Through pH Adjustment. J Colloid Interface Sci 606:860–872

    Article  CAS  PubMed  Google Scholar 

  64. Mason TG, Weitz DA (1995) Linear Viscoelasticity of Colloidal Hard Sphere Suspensions near the Glass Transition. Phys Rev Lett 75:2770

    Article  CAS  PubMed  Google Scholar 

  65. Yang J, Park H, Kim J, Mok J, Kim T, Shin E, Kwak C, Lim S, Kim CB, Park J-S, Na HB, Choi D, Lee J (2020) Yield Stress Enhancement of a Ternary Colloidal Suspension via the Addition of Minute Amounts of Sodium Alginate to the Interparticle Capillary Bridges. Langmuir 36:9424–9435

    Article  CAS  PubMed  Google Scholar 

  66. Cooper CL, Cosgrove T, van Duijneveldt JS, Murray M, Prescott SW (2013) The Use of Solvent Relaxation NMR to Study Colloidal Suspensions. Soft Matter 9:7211–7228

    Article  CAS  Google Scholar 

  67. Elliott LN, Bourne RA, Hassanpour A, Edwards JL, Sutcliffe S, Hunter TN (2018) Salt Enhanced Solvent Relaxation and Particle Surface Area Determination via Rapid Spin-lattice NMR. Powder Technol 333:458–467

    Article  CAS  Google Scholar 

  68. Marchesini S, Paton KR, Brennan B, Turner P, Pollard AJ (2021) Using Nuclear Magnetic Resonance Proton Relaxation to Probe the Surface Chemistry of Carbon 2D Materials. Nanoscale 13:6389–6393

    Article  CAS  PubMed  Google Scholar 

  69. Lee J, Moesari E, Dandamudi CB, Beniah G, Chang B, Iqbal M, Fei Y, Zhou N, Ellison CJ, Johnston KP (2017) Behavior of Spherical Poly(2-acrylamido-2-metylpropanesulfonate) Polyelectrolyte Brushes on Silica Nanoparticles up to Extreme Salinity with Weak Divalent Cation Binding at Ambient and High Temperature. Macromolecules 50:7699–7711

    Article  CAS  Google Scholar 

  70. Park H, Lim S, Yang J, Kwak C, Kim J, Kim J, Choi SS, Kim CB, Lee J (2020) A Systematic Investigation on the Properties of Silica Nanoparticles “Multipoint”-Grafted with Poly(2-acrylamido-2-methylpropanesulfonate-co-acrylic Acid) in Extreme Salinity Brines and Brine-Oil Interfaces. Langmuir 36:3174–3183

    Article  CAS  PubMed  Google Scholar 

  71. Biver C, Hariharan R, Mays J, Russel WB (1997) Neutral and Charged Polymer Brushes: A Model Unifying Curvature Effects from Micelles to Flat Surfaces. Macromolecules 30:1787–1792

    Article  CAS  Google Scholar 

  72. Zhou Z, Solomon MJ, Scale PJ, Boger DV (1999) The Yield Stress of Concentrated Flocculated Suspensions of Size Distributed Particles. J Rheol 43:651–671

    Article  CAS  Google Scholar 

  73. Lim S, Kim JH, Park H, Kwak C, Yang J, Kim J, Ryu SY, Lee J (2021) Role of Electrostatic Interactions in the Adsorption of Dye Molecules by Ti3C2-MXenes. RSC Adv 11:6201–6211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Natu V, Sokol M, Verger L, Barsoum MW (2018) Effect of Edge Charges on Stability and Aggregation of Ti3C2Tz MXene Colloidal Suspensions. J Phys Chem C 122:27745–27753

    Article  CAS  Google Scholar 

  75. Rozmyslowska-Wojciechowska A, Mitrzak J, Szuplewska A, Chudy M, Wozniak J, Petrus M, Wojciechowski T, Vasilchenko AS, Jastzebska AM (2020) Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials 13:2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rand B, Melton IE (1976) Particle Interactions in Aqueous Kaolinite Suspensions. J Colloid Interface Sci 60:308–320

    Article  Google Scholar 

  77. Du J, Morris G, Pushkarova RA, St R. Smart C (2010) Effect of Surface Structure of Kaolinite on Aggregation, Settling Rate, and Bed Density. Langmuir 26:13227–13235

  78. Buron H, Mengual O, Meunier G, Cayre I, Sabre P (2004) Optical Characterization of Concentrated Dispersions: Applications to Laboratory Analyses and On-line Process Monitoring and Control. Polym Int 53:1205–1209

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1A02085492). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1F1A1048634). This research was supported by Nano·Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2009–0082580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joohyung Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Supplementary file2 (MP4 2174 KB)

Supplementary file3 (MP4 6015 KB)

Supplementary file4 (MP4 7930 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Lim, S., Kim, G. et al. Control of the rheological properties of concentrated aqueous MXene sediment suspensions using polymeric additives. Colloid Polym Sci 301, 357–370 (2023). https://doi.org/10.1007/s00396-023-05076-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05076-3

Keywords

Navigation