Skip to main content
Log in

Improved photovoltaic performance of PTB7:PC71BM blend by thermal annealing and solvent vapor annealing

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The ordered aggregation of polymer donor and acceptor greatly affects the charge transport and charge recombination in polymer solar cells (PSCs). The post-production treatment of the active layer is the most widely applied strategy to improve the micro-distribution of polymer. Here, we demonstrated a simple method for high performance solar cell with thermal annealing (TA) and solvent vapor annealing (SVA). For the PSCs based on PTB7:PC71BM, the champion power conversion efficiencies (PCEs) were improved from 7.96 to 8.68% by employing TA + SVA and further to 8.86% with SVA + TA treatment. The enhanced PCEs of PSCs undergoing SVA + TA process are mainly attributed to the formation of a network phase separation structure with donor and acceptor phases penetrating each other and the improvement of the crystallinity of PTB7, while the improved photovoltaic performance with TA + SVA treatment is owing to the improved carrier mobility of blend films. Our work provides a useful strategy toward highly efficient PSCs without time-consuming and laborious fabrication procedures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. You J, Dou L, Hong Z, Li G, Yang Y (2013) Recent trends in polymer tandem solar cells research. Prog Polym Sci 38:1909–1928. https://doi.org/10.1016/j.progpolymsci.2013.04.005

    Article  CAS  Google Scholar 

  2. Huang Y, Kramer EJ, Heeger AJ, Bazan GC (2014) Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev 114:7006–7043. https://doi.org/10.1021/cr400353v

    Article  CAS  Google Scholar 

  3. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398. https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  4. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6:153–161. https://doi.org/10.1038/nphoton.2012.11

    Article  CAS  Google Scholar 

  5. Yu J, Wang N, Zang Y, Jiang Y (2011) Organic photovoltaic cells based on TPBi as a cathode buffer layer. Sol Energ Mat Sol C 95:664–668. https://doi.org/10.1016/j.solmat.2010.09.037

    Article  CAS  Google Scholar 

  6. He F, Yu L (2011) How far can polymer solar cells go? In need of a synergistic approach. J Phys Chem Lett 2:3102–3113. https://doi.org/10.1021/jz201479b

    Article  CAS  Google Scholar 

  7. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L (2020) 18% Efficiency organic solar cells. Sci Bull 65:272–275. https://doi.org/10.1016/j.scib.2020.01.001

    Article  CAS  Google Scholar 

  8. Wang J, Zhan X (2021) Fused-ring electron acceptors for photovoltaics and beyond. Acc Chem Res 54:132–143. https://doi.org/10.1021/acs.accounts.0c00575

    Article  CAS  Google Scholar 

  9. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J (2020) Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv Mater 32:1908205. https://doi.org/10.1002/adma.201908205

    Article  CAS  Google Scholar 

  10. Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J (2018) A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140:7159–7167. https://doi.org/10.1021/jacs.8b02695

    Article  CAS  Google Scholar 

  11. Xue L, Yang Y, Xu J, Zhang C, Bin H, Zhang ZG, Qiu B, Li X, Sun C, Gao L, Yao J, Chen X, Yang Y, Xiao M, Li Y (2017) Side chain engineering on medium bandgap copolymers to suppress triplet formation for high-efficiency polymer solar cells. Adv Mater 29:1703344. https://doi.org/10.1002/adma.201703344

    Article  CAS  Google Scholar 

  12. Kim YJ, Kim MJ, An TK, Kim YH, Park CE (2015) A new multi-functional conjugated polymer for use in high-performance bulk heterojunction solar cells. Chem Commun 51:11572–11575. https://doi.org/10.1039/c5cc03815d

    Article  CAS  Google Scholar 

  13. Park GE, Choi S, Park SY, Lee DH, Cho MJ, Choi DH (2017) Eco-friendly solvent-processed fullerene-free polymer solar cells with over 9.7% efficiency and long-term performance stability. Adv Energy Mater 7:1700566. https://doi.org/10.1002/aenm.201700566

  14. Al-Shekaili N, Hashim S, Muhammadsharif FF, Sulaiman K, Al-Abri MZ (2021) Efficiency and stability improvement of organic solar cells based on PTB7: PCBM through hot-substrate coating. J Electron Mater 50:6828–6835. https://doi.org/10.1007/s11664-021-09238-3

    Article  CAS  Google Scholar 

  15. Al-Shekaili N, Hashim S, Muhammadsharif FF, Al-Abri MZ, Sulaiman K, Yahya MY, Ahmad MR (2020) Enhanced performance of PTB7:PC71BM based organic solar cells by incorporating a nano-layered electron transport of titanium oxide. ECS J Solid State Sci Technol 9:105003. https://doi.org/10.1149/2162-8777/abc1c1

    Article  CAS  Google Scholar 

  16. Romero DG, Mario LD, Portale G, Loi MA (2021) Crystallization driven boost in fill factor and stability in additive-free organic solar cells. J Mater Chem A 9:23783–23792. https://doi.org/10.1039/d1ta08232a

    Article  CAS  Google Scholar 

  17. Vijayan R, Azeez A, Narayan KS (2019) Enhanced stability and optimized morphology induced by electric field assisted annealing of bulk heterojunction solar cells. Sol RRL 3:1900120. https://doi.org/10.1002/solr.201900120

    Article  CAS  Google Scholar 

  18. Chen M, Zhao B, Xin J, Cong Z, Li X, Yang L, Ma W, Wei W (2019) Effects of solvent vapour annealing on the performances of benzo[1,2-b:4,5-b′]dithiophene and 4,7-di(4-hexyl-thiophen-2-yl)-5,6-difluorine-2,1,3-benzothiadiazole-based alternating polymer solar cells with different configurations. Dyes Pigments 161:58–65. https://doi.org/10.1016/j.dyepig.2018.09.032

    Article  CAS  Google Scholar 

  19. Sweii FBS, Bkakri R, Saidi H, Bouazizi A (2020) Effect of annealing treatment on optical and electrical properties of PCDTBT:graphene hybrid structure for photovoltaic application. J Electron Mater 49:410–418. https://doi.org/10.1007/s11664-019-07699-1

    Article  CAS  Google Scholar 

  20. Gollu SR, Sharma R, G S, Gupta D, (2014) Thermal annealing study on P3HT:PCBM based bulk heterojunction organic solar cells using impedance spectroscopy. AIP Conf Proc 1620:150–156. https://doi.org/10.1063/1.4898233

    Article  CAS  Google Scholar 

  21. Bin H, Zhang ZG, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138:4657–4664. https://doi.org/10.1021/jacs.6b01744

    Article  CAS  Google Scholar 

  22. Zhang Y, Sajjad MT, Blaszczyk O, Ruseckas A, Serrano LA, Cooke G, Samuel IDW (2019) Enhanced exciton harvesting in a planar heterojunction organic photovoltaic device by solvent vapor annealing. Org Electron 70:162–166. https://doi.org/10.1016/j.orgel.2019.03.014

    Article  CAS  Google Scholar 

  23. Min J, Güldal NS, Guo J, Fang C, Jiao X, Hu H, Heumuller T, Ade H, Brabec CJ (2017) Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. J Mater Chem A 5:18101–18110. https://doi.org/10.1039/c7ta04769j

    Article  CAS  Google Scholar 

  24. Lin Y, Yu L, Xia Y, Firdaus Y, Dong S, Müller C, Inganäs O, Huang F, Anthopoulos TD, Zhang F, Hou L (2019) One-step blade-coated highly efficient nonfullerene organic solar cells with a self-assembled interfacial layer enabled by solvent vapor annealing. Sol RRL 3:1900179. https://doi.org/10.1002/solr.201900179

    Article  CAS  Google Scholar 

  25. Li J, Xue M, Xue N, Li H, Zhang L, Ren Z, Yan S, Sun X (2019) Highly anisotropic P3HT film fabricated via epitaxy on an oriented polyethylene film and solvent vapor treatment. Langmuir 35:7841–7847. https://doi.org/10.1021/acs.langmuir.9b00402

    Article  CAS  Google Scholar 

  26. Kim Y, Park CE (2018) In-depth consideration of vertically 3D microstructured bulk heterojunction layers via solvent vapor annealing in DR3TSBDT:PC71BM solar cells. J Phys Chem C 122:6514–6525. https://doi.org/10.1021/acs.jpcc.7b12577

    Article  CAS  Google Scholar 

  27. Guo X, Zhang B, Lin Z, Su J, Yang Z, Zhang C, Chang J, Liub SF, Hao Y (2018) Highly efficient perovskite solar cells based on a dopant-free conjugated DPP polymer hole transport layer: influence of solvent vapor annealing. Sustain Energ Fuels 2:2154–2159. https://doi.org/10.1039/c8se00233a

    Article  CAS  Google Scholar 

  28. Jiao C, Pang C, An Q (2019) Nonfullerene organic photovoltaic cells exhibiting 13.76% efficiency by employing upside-down solvent vapor annealing. Int J Energy Res 43:8716–8724. https://doi.org/10.1002/er.4870

    Article  CAS  Google Scholar 

  29. Wang J, Tong Y, Zhang X, Li Z, Hao Y, Wang H (2022) PTB7:PC71BM bulk heterojunction solar cells exhibiting 9.64% efficiency via adopting moderate polarity solvent vapor annealing treatment. Mol Cryst Liq Cryst. https://doi.org/10.1080/15421406.2022.2038456

  30. Li Z, Liu C, Gan G, Sun N, Li X, Tong Y, Wang H, Hao Y (2019) Regio-asymmetric polymers based on fluorinated benzothiadiazole-benzodithiophene for polymer solar cells with a high open-circuit voltage. New J Chem 43:3801–3809. https://doi.org/10.1039/c9nj00001a

    Article  CAS  Google Scholar 

  31. Li Z, Wang X, Ren J, Gan G, Liu C, Sun Q, Wang H, Hao Y (2018) Benzothiadiazole-benzodithiophene based random copolymers for efficient thick-film polymer solar cells via solvent vapor annealing approach. J Mater Chem C 6:4555–4564. https://doi.org/10.1039/c8tc00553b

    Article  CAS  Google Scholar 

  32. Wang JL, Liu KK, Liu S, Xiao F, Chang ZF, Zheng YQ, Dou JH, Zhang RB, Wu HB, Pei J, Cao Y (2017) Donor end-capped hexafluorinated oligomers for organic solar cells with 9.3% efficiency by engineering the position of π-bridge and sequence of two-step annealing. Chem Mater 29:1036–1046. https://doi.org/10.1021/acs.chemmater.6b03796

    Article  CAS  Google Scholar 

  33. Liang Q, Han J, Song C, Yu X, Smilgies DM, Zhao K, Liu J, Han Y (2018) Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J Mater Chem A 6:15610–15620. https://doi.org/10.1039/c8ta05892j

    Article  CAS  Google Scholar 

  34. Zheng Y, Wang G, Huang D, Kong J, Goh T, Huang W, Yu J, Taylor AD (2018) Binary solvent additives treatment boosts the efficiency of PTB7:PCBM polymer solar cells to over 9.5%. Sol RRL 2:1700144. https://doi.org/10.1002/solr.201700144.

  35. Bucher L, Tanguy L, Desbois N, Karsenti PL, Harvey PD, Gros CP, Sharma GD (2018) Photovoltaic properties of a porphyrin-containing polymer as donor in bulk heterojunction solar cells with low energy loss. Sol RRL 2:1700168. https://doi.org/10.1002/solr.201700168

    Article  CAS  Google Scholar 

  36. Balderrama VS, Sanchez JG, Lastra G, Cambarau W, Arias S, Pallares J, Palomares E, Estrada M (2018) High-efficiency organic solar cells based on a halide salt and polyfluorene polymer with a high alignment-level of the cathode selective contact. J Mater Chem A 6:22534–22544. https://doi.org/10.1039/c8ta05778h

    Article  CAS  Google Scholar 

  37. Lu L, Yu L (2014) Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv Mater 26:4413–4430. https://doi.org/10.1002/adma.201400384

    Article  CAS  Google Scholar 

  38. Foertig A, Kniepert J, Gluecker M, Brenner T, Dyakonov V, Neher D, Deibei C (2014) Nongeminate and geminate recombination in PTB7:PCBM solar cells. Adv Funct Mater 24:1306–1311. https://doi.org/10.1002/adfm.201302134

    Article  Google Scholar 

  39. Ren J, Li Z, Zhang Z, Wang X, Zeng X, Sun Q, Cui Y, Wang H, Hao Y (2018) Thickness insensitive polymer solar cells employing D-A1-D-A2 random terpolymers based on different thiophene units as electron-donor. Org Electron 62:56–64. https://doi.org/10.1016/j.orgel.2018.07.017

    Article  CAS  Google Scholar 

  40. Heeger AJ (2014) 25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv Mater 26:10–28. https://doi.org/10.1002/adma.201304373

    Article  CAS  Google Scholar 

  41. Huang YC, Chia HC, Chuang CM, Tsao CS, Chen CY, Su WF (2013) Facile hot solvent vapor annealing for high performance polymer solar cell using spray process. Sol Energ Mat Sol C 114:24–30. https://doi.org/10.1016/j.solmat.2013.02.022

    Article  CAS  Google Scholar 

  42. Dai T, Li X, Zhang Y, Xu D, Geng A, Zhao J, Chen X (2020) Performance improvement of polymer solar cells with binary additives induced morphology optimization and interface modification simultaneously. Sol Energy 201:330–338. https://doi.org/10.1016/j.solener.2020.03.021

    Article  CAS  Google Scholar 

  43. Mihailetchi VD, Wildeman J, Blom PW (2005) Space-charge limited photocurrent. Phys Rev Lett 94:126602. https://doi.org/10.1103/PhysRevLett.94.126602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (61571317 and U1810204), Natural Science Foundation of Shanxi Province (20210302123110 and 20210302123092), Graduate Innovation Project Fund of Shanxi Province (2021Y291), Ningxia Sinostar Display Material Co., Ltd. open fund project for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanfeng Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 883 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, J., Li, Z. et al. Improved photovoltaic performance of PTB7:PC71BM blend by thermal annealing and solvent vapor annealing. Colloid Polym Sci 301, 11–18 (2023). https://doi.org/10.1007/s00396-022-05034-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05034-5

Keywords

Navigation