Skip to main content
Log in

Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7: PCBM Through Hot-Substrate Coating

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Despite the relatively high efficiency of the organic solar cells (OSCs), their stability issues have not yet been fully resolved. Various approaches have been reported in the literature to improve the overall performance and stability of OSCs. In this work, the approach of hot-substrate coating was carried out to enhance the performance and stability of OSCs based on the PTB7:PC71BM active layer. The approach involves maintaining the substrate temperature at 150°C, while depositing the active layers with a spin coater. The results demonstrate that OSCs fabricated via hot-substrate coating achieved a power conversion efficiency (PCE) of 7.94%, whereas devices with active layers deposited at room temperature (RT) achieved an average efficiency of 5.6%. According to the stability study of the devices, it was observed that the hot-substrate coated devices maintained 94% of their initial PCE after 72 h of operation. This is where the RT-coated devices retained 53% of their efficiency. In conclusion, the proposed approach can be applied to improve the efficiency and stability of organic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Luque, and S. Hegedus, Handbook of photovoltaic science and engineering (Chichester: Wiley, 2011).

    Google Scholar 

  2. S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, and Y. Cao, Nat. Photonics 14, 300 (2020).

    Article  CAS  Google Scholar 

  3. L. Zhu, M. Zhang, G. Zhou, T. Hao, J. Xu, J. Wang, C. Qiu, N. Prine, J. Ali, and W. Feng, Adv. Energy Mater. 10, 1904234 (2020).

    Article  CAS  Google Scholar 

  4. T. Supasai, V. Amornkitbamrung, C. Thanachayanont, I.-M. Tang, T. Sutthibutpong, and N. Rujisamphan, Appl. Surf. Sci. 422, 509 (2017).

    Article  CAS  Google Scholar 

  5. S. Holliday, R.S. Ashraf, A. Wadsworth, D. Baran, S.A. Yousaf, C.B. Nielsen, C.-H. Tan, S.D. Dimitrov, Z. Shang, and N. Gasparini, Nat. Commun. 7, 1 (2016).

    Article  Google Scholar 

  6. Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, and Y. Li, Adv. Funct. Mater. 26, 6635 (2016).

    Article  CAS  Google Scholar 

  7. J. You, C.C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, Adv. Mater. 25, 3973 (2013).

    Article  CAS  Google Scholar 

  8. S.M. Abdullah, Z. Ahmad, and K. Sulaiman, Procedia Soc. Behav. Sci. 195, 2135 (2015).

    Article  Google Scholar 

  9. B. Omrane, C. Landrock, Y. Chuo, D. Hohertz, J. Aristizabal, B. Kaminska, and K. Kavanagh, Appl. Phys. Lett. 99, 283 (2011).

    Article  Google Scholar 

  10. N. Espinosa, R. Garcia-Valverde, A. Urbina, and F.C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1293 (2011).

    Article  CAS  Google Scholar 

  11. M. Wang, F. Xie, W. Xie, S. Zheng, N. Ke, J. Chen, N. Zhao, and J. Xu, Appl. Phys. Lett. 98, 88 (2011).

    Google Scholar 

  12. F.F. Muhammad, K.A. Ketuly, and M.Y. Yahya, J. Inorganic Organomet. Polymers Mater. 28, 102 (2018).

    Article  CAS  Google Scholar 

  13. M. Wright, and A. Uddin, Sol. Energy Mater. Sol. Cells 107, 87 (2012).

    Article  CAS  Google Scholar 

  14. Y. Liang, Z. Xu, J. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).

    Article  CAS  Google Scholar 

  15. C.H. To, A. Ng, Q. Dong, A.B. Djurišić, J.A. Zapien, W.K. Chan, and C. Surya, ACS Appl. Mater. Interfaces 7, 13198 (2015).

    Article  CAS  Google Scholar 

  16. J. Hou, X. Guo, Active layer materials for organic solar cells, in: Organic Solar Cells, Springer, 2013, pp. 17-42

  17. F. Zhang, Z. Zhuo, J. Zhang, X. Wang, X. Xu, Z. Wang, Y. Xin, J. Wang, J. Wang, and W. Tang, Sol. Energy Mater. Sol. Cells 97, 71 (2012).

    Article  CAS  Google Scholar 

  18. N. Sharma, S.K. Gupta, and C.M.S. Negi, Superlattices Microstruct. 135, 106278 (2019).

    Article  CAS  Google Scholar 

  19. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).

    Article  Google Scholar 

  20. C.C. Chen, W.H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang, An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11% Adv. Mater. 26, 5670 (2014).

    Article  CAS  Google Scholar 

  21. W. Kim, J.K. Kim, E. Kim, T.K. Ahn, D.H. Wang, and J.H. Park, J. Phys. Chem. C 119, 5954 (2015).

    Article  CAS  Google Scholar 

  22. L. Wang, S. Zhao, Z. Xu, J. Zhao, D. Huang, and L. Zhao, Materials 9, 171 (2016).

    Article  CAS  Google Scholar 

  23. S. Alem, T.-Y. Chu, C.T. Shing, S. Wakim, J. Lu, R. Movileanu, Y. Tao, F. Bélanger, D. Désilets, and S. Beaupré, Org. Electron. 12, 1788 (2011).

    Article  CAS  Google Scholar 

  24. H.-Y. Chen, S.-H. Lin, J.-Y. Sun, C.-H. Hsu, S. Lan, and C.-F. Lin, Nanotechnology 24, 484009 (2013).

    Article  Google Scholar 

  25. L. Lu, T. Xu, I.H. Jung, and L. Yu, J. Phys. Chem. C 118, 22834 (2014).

    Article  CAS  Google Scholar 

  26. G. Wang, T. Jiu, G. Tang, J. Li, P. Li, X. Song, F. Lu, and J. Fang, ACS Sustain. Chem. Eng. 2, 1331 (2014).

    Article  Google Scholar 

  27. Y. Zhang, X. Li, T. Dai, D. Xu, J. Xi, and X. Chen, RSC Adv. 9, 24895 (2019).

    Article  CAS  Google Scholar 

  28. Z. Wang, X. Liu, Y. Lin, Y. Liao, Q. Wei, H. Chen, J. Qiu, Y. Chen, and Y. Zheng, J. Mater. Chem. A. 7, 2773 (2019).

    Article  CAS  Google Scholar 

  29. Z. Yu, L. Zhang, S. Tian, F. Zhang, B. Zhang, F. Niu, P. Zeng, J. Qu, P.N. Rudd, and J. Huang, Adv. Energy Mater. 8, 1701659 (2018).

    Article  Google Scholar 

  30. N. Al-Shekaili, S. Hashim, F.F. Muhammadsharif, A.-A. MZ, K. Sulaiman, M.Y. Yahya, and M.R. Ahmad, ECS J. Solid State Sci. Technol. 9, 105003 (2020).

    Article  CAS  Google Scholar 

  31. S. Ochiai, S. Imamura, S. Kannappan, K. Palanisamy, and P.-K. Shin, Curr. Appl. Phys. 13, S58 (2013).

    Article  Google Scholar 

  32. D. Gupta, S. Mukhopadhyay, and K. Narayan, Sol. Energy Mater. Sol. Cells 94, 1309 (2010).

    Article  CAS  Google Scholar 

  33. P. Vijay, V. Sumaria, Advancement in P3HT PCBM solar cells, the most efficient polymer photovoltaic cell, in: 10th Annual Sesion of Students’ Chemical Engineering Congress (SCHEMCON), 2014, pp. 14

  34. P. Karagiannidis, S. Kassavetis, C. Pitsalidis, and S. Logothetidis, Thin Solid Films 519, 4105 (2011).

    Article  CAS  Google Scholar 

  35. L. Ciammaruchi, F. Brunetti, and I. Visoly-Fisher, Solvent effects on the morphology and stability of PTB7: PCBM based solar cells Sol. Energy 137, 490 (2016).

    Article  CAS  Google Scholar 

  36. F.F. Muhammad, A.J. Muhammad, and K. Sulaiman, J. Technol. Innovations Renew. Energy 5, 3 (2016).

    Article  CAS  Google Scholar 

  37. F.F. Muhammad, M.Y. Yahya, S.S. Hameed, F. Aziz, K. Sulaiman, M.A. Rasheed, and Z. Ahmad, PloS One 12, e0182925 (2017).

    Article  Google Scholar 

  38. B. Qi, and J. Wang, Phys. Chem. Chem. Phys. 15, 8972 (2013).

    Article  CAS  Google Scholar 

  39. D. Barreiro-Argüelles, G. Ramos-Ortiz, J.-L. Maldonado, E. Pérez-Gutiérrez, D. Romero-Borja, M.-A. Meneses-Nava, and J.C. Nolasco, Sol. Energy 163, 510 (2018).

    Article  Google Scholar 

  40. M.B. Upama, M. Wright, B. Puthen-Veettil, N.K. Elumalai, M.A. Mahmud, D. Wang, K.H. Chan, C. Xu, F. Haque, and A. Uddin, RSC Adv. 6, 103899 (2016).

    Article  CAS  Google Scholar 

  41. Z. Ding, J. Kettle, M. Horie, S.-W. Chang, G.C. Smith, A.I. Shames, and E.A. Katz, J. Mater. Chem. A 4, 7274 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Low Dimensional Materials Research Centre (LDMRC), Universiti Malaya and Micro-Nano System Engineering Lab, Universiti Teknologi Malaysia and Nanotechnology Research Centre, Sultan Qaboos University for facilitating the instruments while carrying out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmi F. Muhammadsharif.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shekaili, N., Hashim, S., Muhammadsharif, F.F. et al. Efficiency and Stability Improvement of Organic Solar Cells Based on PTB7: PCBM Through Hot-Substrate Coating. J. Electron. Mater. 50, 6828–6835 (2021). https://doi.org/10.1007/s11664-021-09238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09238-3

Keywords

Navigation