Skip to main content
Log in

Study on the formation mechanism of hydrothermal prefabricated activated carbon and its adsorption capacity for malachite green

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The activated carbon (AC) adsorbents were prepared by KOH activation of hydrothermally pretreated pine sawdust (PS). The physicochemical properties of AC were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrometer (FT-IR), and N2 adsorption–desorption techniques. The malachite green (MG) removal performance of the prepared AC was evaluated under various MG concentrations, pH, and MG/AC ratios. The porous AC shows a fully developed structure with a specific surface area (SSA) of 1900 m2/g and a total pore volume (Vtotal pore) of 1.051 cm3/g. MG could be efficiently removed from aqueous solutions by the prepared AC with rich pores and surface functional groups. MG adsorption capacity of 2209.07 mg/g was observed at the initial MG concentration of 500 mg/L. The MG adsorption mechanism by the prepared AC was explored through the adsorption kinetics, isotherms, and thermodynamics models. The adsorption results could be well illustrated by the pseudo-second-order kinetic model with a R2 of 0.9990 and Langmuir isothermal model with a R2 of 0.9830 indicating the chemisorption dominated in the homogeneous and monolayer adsorption. The diffusion of MG into AC is mainly controlled by the intraparticle diffusion. ΔG0 < 0 demonstrated the spontaneous nature of MG adsorption onto AC, and ΔH0 > 0 implied the endothermic nature of the adsorption process. This is the reason that the adsorption capacity was improved from 2464.10 to 2623.77 mg/g as the temperature was increased from 298 to 318 K at the same MG initial concentration. This work could provide some references to produce efficient adsorbents from biomass.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mullick A, Neogi S (2016) Synthesis of potential biosorbent from used stevia leaves and its application for malachite green removal from aqueous solution: kinetics, isotherm and regeneration studies. RSC Adv 6:65960–65975. https://doi.org/10.1039/c6ra15225b

    Article  CAS  Google Scholar 

  2. Song M, Wei Y, Cai S, Yu L, Zhong Z, Jin B (2018) Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents. Sci Total Environ 618:1416–1422. https://doi.org/10.1016/j.scitotenv.2017.09.268

    Article  PubMed  CAS  Google Scholar 

  3. Zhang J, Zhao Y, Wu S, Jia G, Cui X, Zhao P et al (2022) Enhanced adsorption of malachite green on hydroxyl functionalized coal: behaviors and mechanisms. Process Saf Environ Prot 163:48–57. https://doi.org/10.1016/j.psep.2022.04.072

    Article  CAS  Google Scholar 

  4. Tewari K, Singhal G, Arya RK (2018) Adsorption removal of malachite green dye from aqueous solution. Rev Chem Eng 34:427–453. https://doi.org/10.1515/revce-2016-0041

    Article  CAS  Google Scholar 

  5. Zhou YM, Min YH, Qiao H, Huang Q, Wang EZ, Ma TS (2015) Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int J Bio Macromol 74:271–277

    Article  CAS  Google Scholar 

  6. Rajabi M, Mirza B, Mahanpoor K, Mirjalili M, Najafi F, Moradi O et al (2016) Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters. J Ind Eng Chem 34:130–138. https://doi.org/10.1016/j.jiec.2015.11.001

    Article  CAS  Google Scholar 

  7. Yu J, Zhang LR, Liu B (2019) Adsorption of malachite green with sodium dodecylbenzene sulfonate modified sepiolite: characterization, adsorption performance and regeneration. Int J Env Res Public Health 16. https://doi.org/10.3390/ijerph16183297

  8. Adebayo MA, Adebomi JI, Abe TO, Areo FI (2020) Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite. Colloid Interfac Sci 38. https://doi.org/10.1016/j.colcom.2020.100311

  9. Zhang MM, Mao YP, Wang WL, Yang SX, Song ZL, Zhao XQ (2016) Coal fly ash/CoFe2O4 composites: a magnetic adsorbent for the removal of malachite green from aqueous solution. RSC Adv 6:93564–93574. https://doi.org/10.1039/c6ra08939a

    Article  CAS  Google Scholar 

  10. Chabane L, Cheknane B, Zermane F, Bouras O, Baudu M (2017) Synthesis and characterization of reinforced hybrid porous beads: application to the adsorption of malachite green in aqueous solution. Chem Eng Res Des 120:291–302. https://doi.org/10.1016/j.cherd.2016.12.014

    Article  CAS  Google Scholar 

  11. Ren HJ, Zhang RN, Wang QC, Pan HY, Wang Y (2016) Garlic root biomass as novel biosorbents for malachite green removal: parameter optimization, process kinetics and toxicity test. Chem Res Chinese U 32:647–654. https://doi.org/10.1007/s40242-016-6095-5

    Article  CAS  Google Scholar 

  12. Jerold M, Sivasubramanian V (2016) Biosorption of malachite green from aqueous solution using brown marine macro algae Sargassum swartzii. Desalin Water Treat 57:25288–25300. https://doi.org/10.1080/19443994.2016.1156582

    Article  CAS  Google Scholar 

  13. Pragathiswaran C, Krishnan NA, Abbubakkar BM, Govindhan P, Abuthahir KS (2016) Kinetics and thermodynamics study of malachite green dye onto activated carbon obtained from the Gloriosa superba stem. Int J Res Pharm Chem 6:62–67

    CAS  Google Scholar 

  14. Lima HHC, Maniezzo RS, Llop MEG, Kupfer VL, Arroyo PA, Guilherme MR et al (2019) Synthesis and characterization of pecan nutshell-based adsorbent with high specific area and high methylene blue adsorption capacity. J Mol Liq 276:570–576. https://doi.org/10.1016/j.molliq.2018.12.010

    Article  CAS  Google Scholar 

  15. Roman S, Nabais JMV, Ledesma B, Gonzalez JF, Laginhas C, Titirici MM (2013) Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater 165:127–133. https://doi.org/10.1016/j.micromeso.2012.08.006

    Article  CAS  Google Scholar 

  16. Wang TF, Zhai YB, Zhu Y, Li CT, Zeng GM (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renewable Sustainable Energy Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  CAS  Google Scholar 

  17. Zhang H, Zhang FY, Huang Q (2017) Highly effective removal of malachite green from aqueous solution by hydrochar derived from phycocyanin-extracted algal bloom residues through hydrothermal carbonization. RSC Adv 7:5790–5799. https://doi.org/10.1039/c6ra27782a

    Article  CAS  Google Scholar 

  18. Hou YR, Huang GG, Li JH, Yang QP, Huang SR, Cai JJ (2019) Hydrothermal conversion of bamboo shoot shell to biochar: preliminary studies of adsorption equilibrium and kinetics for rhodamine B removal. J Anal Appl Pyrolysis 143. https://doi.org/10.1016/j.jaap.2019.104694

  19. Zhao P, Lin C, Li Y, Wu S, Cui X, Ding Y et al (2021) Value-added products from pyrolysis of hydrochar derived from polyvinyl chloride and alkali coal. J Cleaner Prod 329. https://doi.org/10.1016/j.jclepro.2021.129769

  20. Fang J, Zhan L, Ok YS, Gao B (2018) Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J Ind Eng Chem 57:15–21. https://doi.org/10.1016/j.jiec.2017.08.026

    Article  CAS  Google Scholar 

  21. Xu QY, Liu TZ, Li L, Liu BY, Wang XD, Zhang SY et al (2021) Hydrothermal carbonization of distillers grains with clay minerals for enhanced adsorption of phosphate and methylene blue. Bioresour Technol 340. https://doi.org/10.1016/j.biortech.2021.125725

  22. Ates A, Altintig E, Demirel H, Yilmaz M (2017) Comparative study on adsorptive removal of Cu, Pb, Zn heavy metals by modified perlite composites. Desalin Water Treat 98:244–253. https://doi.org/10.5004/dwt.2017.21671

    Article  CAS  Google Scholar 

  23. Ji H, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878. https://doi.org/10.1016/S0008-6223(00)00027-0

    Article  Google Scholar 

  24. Altintig E, Acar I, Altundag H, Ozyildirim O (2015) Production of activated carbon from rice husk to support Zn2+ ions. Fresenius Environ Bull 24:1499–1506

    CAS  Google Scholar 

  25. Gupta K, Gupta D, Khatri OP (2019) Graphene-like porous carbon nanostructure from Bengal gram bean husk and its application for fast and efficient adsorption of organic dyes. Appl Surf Sci 476:647–657. https://doi.org/10.1016/j.apsusc.2019.01.138

    Article  CAS  Google Scholar 

  26. Li JW, Zhao PT, Li T, Lei M, Yan WJ, Ge SF (2020) Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust. J Anal Appl Pyrolysis 146: 104771. https://doi.org/10.1016/j.jaap.2020.104771

  27. Wu Q, Yu ST, Hao NJ, Wells T, Meng XZ, Li M et al (2017) Characterization of products from hydrothermal carbonization of pine. Bioresour Technol 244:78–83. https://doi.org/10.1016/j.biortech.2017.07.138

    Article  PubMed  CAS  Google Scholar 

  28. Song M, Jin B, Xiao R, Yang L, Wu Y, Zhong Z et al (2013) The comparison of two activation techniques to prepare activated carbon from corn cob. Biomass Bioenergy 48:250–256. https://doi.org/10.1016/j.biombioe.2012.11.007

    Article  CAS  Google Scholar 

  29. Moreno-Castilla C, Lopez-Ramon MV, Carrasco-Marin F (2000) Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38:1995–2001. https://doi.org/10.1016/S0008-6223(00)00048-8

    Article  CAS  Google Scholar 

  30. Zheng JY, Zhao QL, Ye ZF (2014) Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl Surf Sci 299:86–91. https://doi.org/10.1016/j.apsusc.2014.01.190

    Article  CAS  Google Scholar 

  31. Li M, Li W, Liu S (2011) Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydr Res 346:999–1004. https://doi.org/10.1016/j.carres.2011.03.020

    Article  PubMed  CAS  Google Scholar 

  32. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  33. Oginni O, Singh K, Oporto G, Dawson-Andoh B, McDonald L, Sabolsky E (2019) Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresour Technol Rep 7. https://doi.org/10.1016/j.biteb.2019.100266

  34. Puthusseri D, Aravindan V, Madhavi S, Ogale S (2014) 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ Sci 7:728–735. https://doi.org/10.1039/c3ee42551g

    Article  CAS  Google Scholar 

  35. Huang G, Liu Y, Wu X, Cai J (2019) Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Mater 34:247–257. https://doi.org/10.1016/s1872-5805(19)60014-4

    Article  CAS  Google Scholar 

  36. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P et al (2012) Nanospace engineering of KOH activated carbon. Nanotechnology 23:015401. https://doi.org/10.1088/0957-4484/23/1/015401

    Article  PubMed  CAS  Google Scholar 

  37. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795. https://doi.org/10.1016/j.carbon.2004.11.005

    Article  CAS  Google Scholar 

  38. Lin K, Pan J, Chen Y, Cheng R, Xu X (2009) Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J Hazard Mater 161:231–240. https://doi.org/10.1016/j.jhazmat.2008.03.076

    Article  PubMed  CAS  Google Scholar 

  39. Auta M, Hameed BH (2012) Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem Eng J 198–199:219–227. https://doi.org/10.1016/j.cej.2012.05.075

    Article  CAS  Google Scholar 

  40. Wang S, Zhu ZH, Coomes A, Haghseresht F, Lu GQ (2005) The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. J Colloid Interface Sci 284:440–446. https://doi.org/10.1016/j.jcis.2004.10.050

    Article  PubMed  CAS  Google Scholar 

  41. Saha P, Chowdhury S, Gupta S, Kumar I (2010) Insight into adsorption equilibrium, kinetics and thermodynamics of malachite green onto clayey soil of Indian origin. Chem Eng J 165:874–882. https://doi.org/10.1016/j.cej.2010.10.048

    Article  CAS  Google Scholar 

  42. Mittal A (2006) Adsorption kinetics of removal of a toxic dye, malachite green, from wastewater by using hen feathers. J Hazard Mater 133:196–202. https://doi.org/10.1016/j.jhazmat.2005.10.017

    Article  PubMed  CAS  Google Scholar 

  43. Qu W, Yuan T, Yin G, Xu S, Zhang Q, Su H (2019) Effect of properties of activated carbon on malachite green adsorption. Fuel 249:45–53. https://doi.org/10.1016/j.fuel.2019.03.058

    Article  CAS  Google Scholar 

  44. Langergren S, Svenska BK (1898) Zur theorie der sogenannten adsorption geloster stoffe. Veternskapsakad Handlingar 24:1–39

    Google Scholar 

  45. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34: 451–465. https://doi.org/10.1016/s0032-9592(98)00112-5

  46. Ahmad AA, Ahmad MA, Yahaya NKEM, Mohd Din AT, Yaakub ARW (2020) Honeycomb-like porous-activated carbon derived from gasification waste for malachite green adsorption: equilibrium, kinetic, thermodynamic and fixed-bed column analysis. Desalin Water Treat 196:329–347. https://doi.org/10.5004/dwt.2020.26067

    Article  CAS  Google Scholar 

  47. Leyva-Ramos R, Ocampo-Perez R, Mendoza-Barron J (2012) External mass transfer and hindered diffusion of organic compounds in the adsorption on activated carbon cloth. Chem Eng J 183:141–151. https://doi.org/10.1016/j.cej.2011.12.046

    Article  CAS  Google Scholar 

  48. Baek MH, Ijagbemi CO, O SJ, Kim DS (2010) Removal of malachite green from aqueous solution using degreased coffee bean. J Hazard Mater 176:820–828. https://doi.org/10.1016/j.jhazmat.2009.11.110

    Article  PubMed  CAS  Google Scholar 

  49. Gerçel Ö, Özcan A, Özcan AS, Gerçel HF (2007) Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Appl Surf Sci 253:4843–4852. https://doi.org/10.1016/j.apsusc.2006.10.053

    Article  CAS  Google Scholar 

  50. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  51. EL Hall KR, Acrivos A, Vermeulen T (1966) Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Ind Eng Chem Res 5:212–223. https://doi.org/10.1021/i160018a011

    Article  CAS  Google Scholar 

  52. Wang J, Guo X (2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279. https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  PubMed  CAS  Google Scholar 

  53. Freundlich H (1907) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    Article  CAS  Google Scholar 

  54. Mondal S, Majumder SK (2019) Honeycomb-like porous activated carbon for efficient copper (II) adsorption synthesized from natural source: kinetic study and equilibrium isotherm analysis. J Environ Chem Eng 7:103236. https://doi.org/10.1016/j.jece.2019.103236

    Article  CAS  Google Scholar 

  55. Oepen Bv W, Kördel WK (1991) Sorption of nonpolar and polar compounds to soils:processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere 22:285–304. https://doi.org/10.1016/0045-6535(91)90318-8

    Article  Google Scholar 

  56. Dotto GL, Santos JM, Rodrigues IL, Rosa R, Pavan FA, Lima EC (2015) Adsorption of methylene blue by ultrasonic surface modified chitin. J Colloid Interface Sci 446:133–140. https://doi.org/10.1016/j.jcis.2015.01.046

    Article  PubMed  CAS  Google Scholar 

  57. Sharma G, Sharma S, Kumar A, Naushad M, Du B, Ahamad T et al (2019) Honeycomb structured activated carbon synthesized from Pinus roxburghii cone as effective bioadsorbent for toxic malachite green dye. J Water Process Eng 32:100931. https://doi.org/10.1016/j.jwpe.2019.100931

  58. Tang SH, Ahmad Zaini MA (2020) Development of activated carbon pellets using a facile low-cost binder for effective malachite green dye removal. J Cleaner Prod 253:119970. https://doi.org/10.1016/j.jclepro.2020.119970

  59. Tang SH, Zaini MAA (2021) Microporous activated carbon prepared from yarn processing sludge via composite chemical activation for excellent adsorptive removal of malachite green. Surf Interfaces 22:100832. https://doi.org/10.1016/j.surfin.2020.100832

  60. Azaman SH, Afandi A, Hameed B, Din AM (2018) Removal of malachite green from aqueous phase using coconut shell activated carbon: adsorption, desorption, and reusability studies. Int J Appl Sci Eng Technol 21:317–330. https://doi.org/10.6180/jase.201809_21(3).0003

    Article  Google Scholar 

  61. Baytar O, Ceyhan AA, Sahin O (2021) Production of activated carbon from Elaeagnus angustifolia seeds using H3PO4 activator and methylene blue and malachite green adsorption. Int J Phytoremediation 23:693–703. https://doi.org/10.1080/15226514.2020.1849015

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (Grant 2020QN07), the Assistance Program for Future Outstanding Talents of China University of Mining and Technology (2022WLJCRCZL204), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX22_2530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peitao Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Gai, D., Zhu, B. et al. Study on the formation mechanism of hydrothermal prefabricated activated carbon and its adsorption capacity for malachite green. Colloid Polym Sci 300, 973–988 (2022). https://doi.org/10.1007/s00396-022-05004-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05004-x

Keywords

Navigation