Skip to main content
Log in

Glycidyl methacrylate-based polyHIPEs: a facile redox-initiated polymerization of the oil phase in a water-in-oil emulsions and amine functionalization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this article, a simple and efficient method for the synthesis of highly porous monoliths based on glycidyl methacrylate (GMA) crosslinked with divinylbenzene (DVB) or ethylene glycol dimethacrylate (EGDMA) is presented. Redox-initiated polymerization in the external (oil) phase of a high internal phase emulsion (HIPE) is used. The use of the oil-soluble redox couple benzoyl peroxide/dimethyl-p-toluidine eliminates the need to heat the usually unstable GMA-based HIPEs during polymerization. The most striking feature of these cured GMA polyHIPEs is their open-cell, highly interconnected porous structure. The polyHIPEs crosslinked with EGDMA contain voids with a diameter of 10 to 13 µm, and the polyHIPEs crosslinked with DVB contain voids with a diameter of 10 to 22 µm. In both cases, the surfaces of the voids have a high density of windows with a diameter of 0.5 to 1 µm. Highly crosslinked poly(GMA-co-EGDMA) monoliths showed negligible volume shrinkage when heated to 200 °C. In order to obtain monoliths with ion-exchange groups on the surface of the pores for chromatography applications, functionalization with different multifunctional diamines was performed. FTIR spectroscopy and nitrogen content analysis were used to monitor the functionalization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haq Z, Barby D (1985) Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids. US 4522953

  2. Stubenrauch C, Menner A, Bismarck A, Drenckhan W (2018) Emulsion and foam templating promising routes to tailor-made porous polymers. Angew Chem Int Ed 57:10024–10032. https://doi.org/10.1002/anie.201801466

    Article  CAS  Google Scholar 

  3. Yang S, Zeng L, Li Z, Zhang X, Liu H, Nie C, Liu H (2014) Tailoring the morphology of emulsion-based (glycidylmethacrylate-divinylbenzene) monoliths. Eur Polym J 57:127–136. https://doi.org/10.1016/j.eurpolymj.2014.05.014

    Article  CAS  Google Scholar 

  4. Barbetta A, Dentini M, Leandri L, Ferraris G, Coletta A, Bernabei M (2009) Synthesis and characterization of porous glycidylmethacrylate–divinylbenzene monoliths using the high internal phase emulsion approach. React Funct Polym 69:724–736. https://doi.org/10.1016/j.reactfunctpolym.2009.05.007

    Article  CAS  Google Scholar 

  5. Junkar I, Koloini T, Krajnc P, Nemec D, Podgornik A, Štrancar A (2007) Pressure drop characteristics of poly (high internal phase emulsion) monoliths. J Chromatogr A 1144:48–54. https://doi.org/10.1016/j.chroma.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  6. Kimmins SD, Wyman P, Cameron NR (2012) Photopolymerised methacrylate-based emulsion-templated porous polymers. React Funct Polym 72:947–954. https://doi.org/10.1016/j.reactfunctpolym.2012.06.015

    Article  CAS  Google Scholar 

  7. Yang S, Zeng L, Wang Y, Sun X, Sun P, Liu H, Nie C, Liu H (2014) Facile approach to glycidyl methacrylate-based polyHIPE monoliths with high epoxy-group content. Coll Polym Sci 292:2563–2570. https://doi.org/10.1007/s00396-014-3295-8

    Article  CAS  Google Scholar 

  8. Krajnc P, Leber N, Stefanec D, Kontrec S, Podgornik A (2005) Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. J Chromatogr A 1065:69–73. https://doi.org/10.1016/j.chroma.2004.10.051

    Article  CAS  PubMed  Google Scholar 

  9. Yao CH, Qi L, Jia HY, Xin PY, Yang GL, Chen Y (2009) A novel glycidyl methacrylate-based monolith with sub-micron skeletons and well-defined macropores. J Mater Chem 19:767–772. https://doi.org/10.1039/B816712E

    Article  CAS  Google Scholar 

  10. Kimmins SD, Wyman P, Cameron NR (2014) Amine-functionalization of glycidyl methacrylate-containing emulsion-templated porous polymers and immobilization of proteinase K for biocatalysis. Polymer 55:416–425. https://doi.org/10.1016/j.polymer.2013.09.019

    Article  CAS  Google Scholar 

  11. Huš S, Kolar M, Krajnc P (2016) Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions). J Chromatogr A 1437:168–175. https://doi.org/10.1016/j.chroma.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  12. Majer J, Krajnc P (2010) Amine functionalisations of glycidyl methacrylate based PolyHIPE monoliths. Macromol Symp 296:5–10. https://doi.org/10.1002/masy.201051002

    Article  CAS  Google Scholar 

  13. Pahovnik D, Majer J, Žagar E, Kovačič S (2016) Synthesis of hydrogel polyHIPEs from functionalized glycidyl methacrylate. Polym Chem 7:5132–5138. https://doi.org/10.1039/C6PY01122E

    Article  CAS  Google Scholar 

  14. Majer J, Žagar E, Krajnc P, Kovačič S (2019) In situ hyper-cross-linking of glycidyl methacrylate–based polyHIPEs through the amine-enriched high internal phase emulsions. Coll Polym Sci 297:239–247. https://doi.org/10.1007/s00396-018-4455-z

    Article  CAS  Google Scholar 

  15. Frankovič V, Podgornik A, Lendero-Krajnc N, Smrekar F, Krajnc P, Štrancar A (2008) Characterisation of grafted weak anion-exchange methacrylate monoliths. J Chromatogr A 1207:84–93. https://doi.org/10.1016/j.chroma.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  16. Yang S, Wang Y, Jia Y, Sun X, Sun P, Qin Y, Li R, Liu H, Nie C (2018) Tailoring the morphology and epoxy group content of glycidyl methacrylate-based polyHIPE monoliths via radiation-induced polymerization at room temperature. Coll Polym Sci 296:1005–1016. https://doi.org/10.1007/s00396-018-4307-x

    Article  CAS  Google Scholar 

  17. Pulko I, Smrekar V, Podgornik A, Krajnc P (2011) Emulsion templated open porous membranes for protein purification. J Chromatogr A 1218:2396–2401. https://doi.org/10.1016/j.chroma.2010.11.069

    Article  CAS  PubMed  Google Scholar 

  18. Jerenec S, Šimic M, Savnik A, Podgornik A, Kolar M, Turnšek M, Krajnc P (2014) Glycidyl methacrylate and ethylhexyl acrylate based polyHIPE monoliths: morphological, mechanical and chromatographic properties. React Funct Polym 78:32–37. https://doi.org/10.1016/j.reactfunctpolym.2014.02.011

    Article  CAS  Google Scholar 

  19. Paljevac M, Kotek J, Jeřabek K, Krajnc P (2018) Influence of topology of highly porous methacrylate polymers on their mechanical properties. Macromol Mater Eng 303:1700337. https://doi.org/10.1002/mame.201700337

    Article  CAS  Google Scholar 

  20. Cameron NR, Sherrington DC, Albiston L, Gregory DP (1996) Study of the formation of the open-cellular morphology of poly(styrene/divinylbenzene) polyHIPE materials by cryo-SEM. Coll Polym Sci 274:592–595. https://doi.org/10.1007/BF00655236

    Article  CAS  Google Scholar 

  21. Menner A, Bismarck A (2006) New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why polyHIPEs have an interconnected pore network structure. Macromol Symp 242:19–24. https://doi.org/10.1002/masy.200651004

    Article  CAS  Google Scholar 

  22. Viswanathan P, Johnson DW, Hurley C, Cameron NR, Battaglia G (2014) 3D surface functionalization of emulsion-templated polymeric foams. Macromolecules 47:7091–7098. https://doi.org/10.1021/ma500968q

    Article  CAS  Google Scholar 

  23. Zhang T, Sanguramath RA, Israel S, Silverstein MS (2019) Emulsion templating: porous polymers and beyond. Macromolecules 52:5445–5479. https://doi.org/10.1021/acs.macromol.8b02576

    Article  CAS  Google Scholar 

  24. Moglia RS, Whitely M, Dhavalikar P, Robinson J, Pearce H, Brooks M, Stuebben M, Cordner N, Cosgriff-Hernandez E (2014) Injectable polymerized high internal phase emulsions with rapid in situ curing. Biomacromol 15:2870–2878. https://doi.org/10.1021/bm500754r

    Article  CAS  Google Scholar 

  25. Althubeiti KM, Horozov TS (2019) Efficient preparation of macroporous poly(methyl methacrylate) materials from high internal phase emulsion templates. React Funct Polym 142:207–212. https://doi.org/10.1016/j.reactfunctpolym.2019.06.015

    Article  CAS  Google Scholar 

  26. Thompson JD, Carr PW (2002) A study of the critical criteria for analyte stability in high-temperature liquid chromatography. Anal Chem 74:1017–1023. https://doi.org/10.1021/ac010917w

    Article  CAS  PubMed  Google Scholar 

  27. Paljevac M, Krajnc P (2020) Hierarchically porous poly(glycidyl methacrylate) through hard sphere and high internal phase emulsion templating. Polymer 209:123064. https://doi.org/10.1016/j.polymer.2020.123064

    Article  CAS  Google Scholar 

  28. Knall A-C, Kovačič S, Hollauf M, Reishofer D, Saf R, Slugovc C (2013) Inverse electron demand Diels-Alder (iEDDA) functionalisation of macroporous poly(dicyclopentadiene) foams. Chem Commun 49:7325–7327. https://doi.org/10.1039/c3cc42925c

    Article  CAS  Google Scholar 

  29. Trupej N, Novak Z, Knez Ž, Slugovc C, Kovačič S (2017) Supercritical CO2 mediated functionalization of highly porous emulsionderived foams: ScCO2 absorption and epoxidation. J CO2 Util 21, 336–341. https://doi.org/10.1016/j.jcou.2017.07.024

Download references

Acknowledgements

The author thanks Dr. Sebastijan Kovačič (National Institute of Chemistry) for his kind assistance with SEM pictures.

Funding

This research was partially funded by the Slovenian Research Agency through programme P1-0403. Javna Agencija za Raziskovalno Dejavnost RS, P1-0403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janja Majer Kovačič.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovačič, J.M. Glycidyl methacrylate-based polyHIPEs: a facile redox-initiated polymerization of the oil phase in a water-in-oil emulsions and amine functionalization. Colloid Polym Sci 300, 159–166 (2022). https://doi.org/10.1007/s00396-021-04936-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04936-0

Keywords

Navigation