Skip to main content
Log in

Miniemulsion polymerization via membrane emulsification: Exploring system feasibility for different monomers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Membrane emulsification using pore sizes of 100 and 800 nm in conjunction with miniemulsion polymerization has been investigated for monomers with varying water solubilities, namely, styrene, n-butyl methacrylate (nBMA), benzyl methacrylate (BzMA), and n-butyl acrylate (nBA), and compared with previous work on methyl methacrylate (MMA). The O/W interfacial tension is an important parameter for 100 nm pore size (but less so for 800 nm pore size) — increasing O/W interfacial tension leads to an increase in membrane emulsification time as well as increases in the monomer droplet size and particle size. The most nonpolar monomer styrene required impractically long emulsification times. For the other monomers, the miniemulsions were polymerized by radical polymerization, resulting in monomodal particle size distributions. Overall, the results demonstrate that membrane emulsification in tandem with miniemulsion polymerization is a convenient method for synthesis of well-defined polymer nanoparticles of various monomers in the approximate size range 200–3500 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technolo Biotechnol 79:209–218. https://doi.org/10.1002/jctb.969

    Article  CAS  Google Scholar 

  2. Joscelyne SM, Tragardh G (2000) Membrane emulsification - a literature review. J Membr Sci 169:107–117. https://doi.org/10.1016/S0376-7388(99)00334-8

    Article  CAS  Google Scholar 

  3. Nakashima T, Shimizu M, Kukizaki M (2001) Particle control of emulsion by membrane emulsification and its applications. Adv Drug Deliv Rev 45:47–56. https://doi.org/10.1016/S0169-409X(00)00099-5

    Article  Google Scholar 

  4. Oh DH, Balakrishnan P, Oh Y-K, Kim D-D, Yong CS, Choi H-G (2011) Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification. Int J Pharm 404:191–197. https://doi.org/10.1016/j.ijpharm.2010.10.045

    Article  CAS  PubMed  Google Scholar 

  5. Piacentini E, Drioli E, Giorno L (2014) Membrane emulsification technology: twenty-five years of inventions and research through patent survey. J Membr Sci 468:410–422. https://doi.org/10.1016/j.memsci.2014.05.059

    Article  CAS  Google Scholar 

  6. Ribeiro HS, Janssen JJM, Kobayashi I, Nakajima M (2010) Membrane emulsification for food applications. In: Membr Technolo, pp 129–166

  7. Charcosset C (2009) Preparation of emulsions and particles by membrane emulsification for the food processing industry. J Food Eng 92:241–249. https://doi.org/10.1016/j.jfoodeng.2008.11.017

    Article  CAS  Google Scholar 

  8. Carballido L, Dabrowski ML, Dehli F, Koch L, Stubenrauch C (2020) Monodisperse liquid foams via membrane foaming. J Colloid Interface Sci 568:46–53. https://doi.org/10.1016/j.jcis.2020.02.036

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Ma J, Jiang Y, Jiang T, Wang Y, Chen Y, Liu S (2016) Immobilizing enzymes in regular-sized gelatin microspheres through a membrane emulsification method. J Mater Sci 51:6357–6369. https://doi.org/10.1007/s10853-016-9932-5

    Article  CAS  Google Scholar 

  10. Piacentini E, Yan M, Giorno L (2017) Development of enzyme-loaded PVA microspheres by membrane emulsification. J Membr Sci 524:79–86. https://doi.org/10.1016/j.memsci.2016.11.008

    Article  CAS  Google Scholar 

  11. Omi S, Kaneko K, Nakayama A, Ki K, Taguchi T, Iso M, Nagai M, Ma G-H (1997) Application of porous microspheres prepared by SPG (Shirasu porous glass) emulsification as immobilizing carriers of glucoamylase (GluA). J Appl Polym Sci 65:2655–2664. https://doi.org/10.1002/(SICI)1097-4628(19970926)65:13%3c2655::AID-APP7%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  12. Hatate Y, Uemura Y, Ijichi K, Kato Y, Hano T, Baba Y, Kawano Y (1995) Preparation of GPC packed polymer beads by a SPG membrane emulsifier. J Chem Eng, Jpn 28:656–659. https://doi.org/10.1252/jcej.28.656

    Article  CAS  Google Scholar 

  13. Dowding PJ, Goodwin JW, Vincent B (2001) Production of porous suspension polymer beads with a narrow size distribution using a cross-flow membrane and a continuous tubular reactor. Colloids Surf, A Physicochem Eng Asp 180:301–309. https://doi.org/10.1016/S0927-7757(00)00777-9

    Article  CAS  Google Scholar 

  14. Liu W, Yang X-L, Winston Ho WS (2011) Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci 100:75–93. https://doi.org/10.1002/jps.22272

    Article  CAS  PubMed  Google Scholar 

  15. Piacentini E, Dragosavac M, Giorno L (2017) Pharmaceutical particles design by membrane emulsification: preparation methods and applications in drug delivery. Curr Pharm Des 23:302–318. https://doi.org/10.2174/1381612823666161117160940

    Article  CAS  PubMed  Google Scholar 

  16. Vladisavljević GT (2015) Structured microparticles with tailored properties produced by membrane emulsification. Adv Colloid Interface Sci 225:53–87. https://doi.org/10.1016/j.cis.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  17. Katoh R, Asano Y, Furuya A, Sotoyama K, Tomita M (1996) Preparation of food emulsions using a membrane emulsification system. J Membr Sci 113:131–135. https://doi.org/10.1016/0376-7388(95)00227-8

    Article  CAS  Google Scholar 

  18. Katoh R, Asano Y, Furuya A, Sotoyama K, Tomita M (1997) Methods for preparation of W/O food emulsions using the membrane immersed with oils and fats. Nippon Shokuhin Kogyo Gakkai-Shi 44:238–242. https://doi.org/10.3136/nskkk.44.238

    Article  CAS  Google Scholar 

  19. Katoh R, Asano Y, Furuya A, Sotoyama K, Tomita M (1997) Conditions for preparation of w/o food emulsions using a membrane emulsification system. Nippon Shokuhin Kogyo Gakkai-Shi 44:44–49. https://doi.org/10.3136/nskkk.44.44

    Article  CAS  Google Scholar 

  20. Mine Y, Shimizu M, Nakashima T (1996) Preparation and stabilization of simple and multiple emulsions using a microporous glass membrane. Colloid Surf, B 6:261–268. https://doi.org/10.1016/0927-7765(95)01264-8

    Article  CAS  Google Scholar 

  21. Zanatta V, Rezzadori K, Penha FM, Zin G, Lemos-Senna E, Petrus JCC, Di Luccio M (2017) Stability of oil-in-water emulsions produced by membrane emulsification with microporous ceramic membranes. J Food Eng 195:73–84. https://doi.org/10.1016/j.jfoodeng.2016.09.025

    Article  CAS  Google Scholar 

  22. Williams RA, Peng S, Wheeler D, Morley N, Taylor D, Whalley M, Houldsworth D (1998) Controlled production of emulsions using a crossflow membrane: part II: industrial scale manufacture. Chem Eng Res Des 76:902–910. https://doi.org/10.1205/026387698525702

    Article  CAS  Google Scholar 

  23. Omi S, Ma G-H, Nagai M (2000) Membrane emulsification a versatile tool for the synthesis of polymeric microspheres. Macromol Symp 151:319–330. https://doi.org/10.1002/1521-3900(200002)151:13.0.co;2-x

    Article  CAS  Google Scholar 

  24. Schröder V, Behrend O, Schubert H (1998) Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membranes. J Colloid Interface Sci 202:334–340. https://doi.org/10.1006/jcis.1998.5429

    Article  Google Scholar 

  25. Schröder V, Schubert H (1998) Influence of emulsifier and pore size on membrane emulsification. Spec Publ-R Soc Chem 227:70–80

    Google Scholar 

  26. Nakashima T, Shimizu M, Kukizaki M (1991) Membrane emulsification operation manual. In: Department of Chemistry, Industrial Research Institute of Miyazaki Prefecture, Miyazaki

  27. Yuyama H, Watanabe T, Ma GH, Nagai M, Omi S (2000) Preparation and analysis of uniform emulsion droplets using SPG membrane emulsification technique. Colloids Surf, A Physicochem Eng Asp 168:159–174. https://doi.org/10.1016/S0927-7757(00)00452-0

    Article  CAS  Google Scholar 

  28. Joscelyne SM, Trägårdh G (1999) Food emulsions using membrane emulsification: conditions for producing small droplets. J Food Eng 39:59–64. https://doi.org/10.1016/S0260-8774(98)00146-0

    Article  Google Scholar 

  29. Kobayashi I, Yasuno M, Iwamoto S, Shono A, Satoh K, Nakajima M (2002) Microscopic observation of emulsion droplet formation from a polycarbonate membrane. Colloids Surf, A Physicochem Eng Asp 207:185–196. https://doi.org/10.1016/S0927-7757(02)00093-6

    Article  CAS  Google Scholar 

  30. Scherze I, Marzilger K, Muschiolik G (1999) Emulsification using micro porous glass (MPG): surface behaviour of milk proteins. Colloids Surf, B 12:213–221. https://doi.org/10.1016/S0927-7765(98)00076-9

    Article  CAS  Google Scholar 

  31. Vladisavljevic GT, Schubert H (2002) Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes. Desalination 144:167–172. https://doi.org/10.1016/S0011-9164(02)00307-7

    Article  CAS  Google Scholar 

  32. Kandori K, Kishi K, Ishikawa T (1991) Formation mechanisms of monodispersed W/O emulsions by SPG filter emulsification method. Colloids Surf 61:269–279. https://doi.org/10.1016/0166-6622(91)80315-F

    Article  CAS  Google Scholar 

  33. Kandori K, Kishi K, Ishikawa T (1991) Preparation of monodispersed W/O emulsions by Shirasu-porous-glass filter emulsification technique. Colloids Surf 55:73–78. https://doi.org/10.1016/0166-6622(91)80083-Z

    Article  CAS  Google Scholar 

  34. Kukizaki M, Goto M (2006) Effects of interfacial tension and viscosities of oil and water phases on monodispersed droplet formation using a Shirasu-porous-glass (SPG) membrane. Membrane 31:215–220. https://doi.org/10.5360/membrane.31.215

    Article  CAS  Google Scholar 

  35. Schork JF, Luo Y, Smulders W, Russum JP, Butte A, Fontenot K (2005) Miniemulsion Polymerization. Adv Polym Sci 129–255

  36. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757. https://doi.org/10.1016/S0079-6700(01)00051-X

    Article  CAS  Google Scholar 

  37. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346. https://doi.org/10.1016/S0079-6700(02)00010-2

    Article  CAS  Google Scholar 

  38. Asua JM (2014) Challenges for industrialization of miniemulsion polymerization. Prog Polym Sci 39:1797–1826. https://doi.org/10.1016/j.progpolymsci.2014.02.009

    Article  CAS  Google Scholar 

  39. Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M (2015) Controlled/living radical polymerization in dispersed systems: an update. Chem Rev 115:9745–9800. https://doi.org/10.1021/cr500625k

    Article  CAS  PubMed  Google Scholar 

  40. Landfester K (2003) Miniemulsions for nanoparticle synthesis. In: Colloid Chemistry II. Springer, pp 75–123

  41. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330. https://doi.org/10.1080/10408398.2011.559558

    Article  CAS  Google Scholar 

  42. Zetterlund PB, Kagawa Y, Okubo M (2008) Controlled/living radical polymerization in dispersed systems. Chem Rev 108:3747–3794. https://doi.org/10.1021/cr800242x

    Article  CAS  PubMed  Google Scholar 

  43. Zetterlund PB, Saka Y, Okubo M (2009) Gelation and hollow particle formation in nitroxide-mediated radical copolymerization of styrene and divinylbenzene in miniemulsion. Macromol Chem Phys 210:140–149. https://doi.org/10.1002/macp.200800451

    Article  CAS  Google Scholar 

  44. Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed Engl 48:4488–4507. https://doi.org/10.1002/anie.200900723

    Article  CAS  PubMed  Google Scholar 

  45. Nauman N, Zaquen N, Junkers T, Boyer C, Zetterlund PB (2019) Particle size control in miniemulsion polymerization via membrane emulsification. Macromolecules 52:4492–4499. https://doi.org/10.1021/acs.macromol.9b00447

    Article  CAS  Google Scholar 

  46. Chaiyasat P, Namwong S, Okubo M, Chaiyasat A (2016) Synthesis of micrometer-sized poly(methyl methacrylate) particles by microsuspension iodine transfer polymerization (ms ITP). RSC Adv 6:95062–95066. https://doi.org/10.1039/C6RA19288B

    Article  CAS  Google Scholar 

  47. Nauman N, Zaquen N, Boyer C, Zetterlund PB (2020) Miniemulsion photopolymerization in a continuous tubular reactor: particle size control via membrane emulsification. Polym Chem 11:4660–4669. https://doi.org/10.1039/D0PY00654H

    Article  CAS  Google Scholar 

  48. Agustina S, Tokuda M, Minami H, Boyer C, Zetterlund PB (2017) Synthesis of polymeric nano-objects of various morphologies based on block copolymer self-assembly using microporous membranes. React Chem Eng 2:451–457. https://doi.org/10.1039/C7RE00032D

    Article  CAS  Google Scholar 

  49. Chang H-C, Lin Y-Y, Chern C-S, Lin S-Y (1998) Determination of critical micelle concentration of macroemulsions and miniemulsions. Langmuir 14:6632–6638. https://doi.org/10.1021/la971109w

    Article  CAS  Google Scholar 

  50. Dong Y, Sundberg DC (2003) hydrophobic homopolymer/water interfaces. J Colloid Interface Sci 258:97–101. https://doi.org/10.1016/S0021-9797(02)00060-7

    Article  CAS  Google Scholar 

  51. Gijsbertsen-Abrahamse A (2003) Membrane emulsification: process principles. Wageningen University

  52. Matos González M (2013) Production of emulsions with controlled droplet size containing bioactive compounds using membranes. University of Oviedo

  53. Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349. https://doi.org/10.1016/0009-2509(93)80021-H

    Article  CAS  Google Scholar 

  54. Lloyd DM, Norton IT, Spyropoulos F (2014) Processing effects during rotating membrane emulsification. J Membr Sci 466:8–17. https://doi.org/10.1016/j.memsci.2014.04.035

    Article  CAS  Google Scholar 

  55. Peng SJ, Williams RA (1998) Controlled production of emulsions using a crossflow membrane: part I: droplet formation from a single pore. Chem Eng Res Des 76:894–901. https://doi.org/10.1205/026387698525694

    Article  CAS  Google Scholar 

  56. Matos M, Suárez MA, Gutiérrez G, Coca J, Pazos C (2013) Emulsification with microfiltration ceramic membranes: a different approach to droplet formation mechanism. J Membr Sci 444:345–358. https://doi.org/10.1016/j.memsci.2013.05.033

    Article  CAS  Google Scholar 

  57. Zetterlund PB, D’hooge DR, (2019) The nanoreactor concept: kinetic features of compartmentalization in dispersed phase polymerization. Macromolecules 52:7963–7976. https://doi.org/10.1021/acs.macromol.9b01037

    Article  CAS  Google Scholar 

  58. Barner-Kowollik C, Beuermann S, Buback M, Castignolles P, Charleux B, Coote M, Hutchinson R, Junkers T, Lacík I, Russell GT, Stach M, Herk AM (2014) Critically evaluated rate coefficients in radical polymerization 7. Secondary-radical propagation rate coefficients for methyl acrylate in the bulk. J Polym Chem 5:204–212. https://doi.org/10.1039/C3PY00774J

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per B. Zetterlund.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nauman, N., Boyer, C. & Zetterlund, P.B. Miniemulsion polymerization via membrane emulsification: Exploring system feasibility for different monomers. Colloid Polym Sci 300, 309–317 (2022). https://doi.org/10.1007/s00396-021-04918-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04918-2

Keywords

Navigation