Skip to main content
Log in

Synthesis of luminescent core–shell polymer particles carrying amino groups for covalent immobilization of enzymes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Luminescent core–shell polymer particles carrying amino groups for covalent immobilization of enzymes were synthesized for practical applications in immunoassays. The polystyrene core particles were synthesized by miniemulsion polymerization of oil-in-water emulsion styrene droplets dissolving 2-(2-chloropropionyl)ethyl methacrylate and the europium complex emulsified with 2-methacryloyloxyethyl-N,N-dimethyl-Nn-dodecylammonium bromide. The red luminescence attributed to europium complexes embedded in the core particles was observed upon UV irradiation. The PSt-g-POEGMAx-NH2 aminated core–shell particles were prepared by surface-initiated atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMAx), followed by Gabriel synthesis. The densities of grafted chains were determined by the composition, the hydrodynamic diameters, and the fluorescence labeling method. POEGMAx-grafted chains were found to affect the dispersion stability of the particles. The nonspecific adsorption of bovine serum albumin was suppressed by the POEGMAx-grafted chains. The enzymatic activity of horseradish peroxidase covalently bound to the terminal amino groups of POEGMAx-grafted chains was evaluated by colorimetric immunosorbent assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:761–770. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  Google Scholar 

  2. Al-Muntasheri GA, Hussein IA, Nasr-El-Din HA, Amin MB (2007) Viscoelastic properties of a high temperature cross-linked water shut-off polymeric gel. J Petrol Sci Eng 55:56–66. https://doi.org/10.1016/j.petrol.2006.04.004

    Article  CAS  Google Scholar 

  3. Cao J, Pan X, Huang W, Wang Y, Hua D, Zhu X, Liang H (2012) Synthesis of cationic poly(4-vinylpyridine)-functionalized colloidal particles by emulsion polymerization with reactive block copolymer for protein adsorption. J Colloid Interface Sci 381:137–142. https://doi.org/10.1016/j.jcis.2012.05.010

    Article  CAS  PubMed  Google Scholar 

  4. Gao D, Feng J, Ma J, Lü B, Lin J, Zhang J (2014) Synthesis of cationic binder through surfactant-free emulsion polymerization for textile pigment applications. Prog Org Coat 77:1834–1840. https://doi.org/10.1016/j.porgcoat.2014.06.007

    Article  CAS  Google Scholar 

  5. Gehan TS, Bag M, Renna LA, Shen X, Algaier DD, Lahti PM, Russell TP, Venkataraman D (2014) Multi-scale active layer morphologies for organic photovoltaics through self-assembly of nanospheres. Nano Lett 14:5238–5243. https://doi.org/10.1021/nl502209s

    Article  CAS  PubMed  Google Scholar 

  6. Gärtner S, Christmann M, Sankaran S, Röhm H, Prinz EM, Penth F, Pütz A, Türeli AE, Penth B, Baumstümmler B, Colsmann A (2014) Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions. Adv Mater 26:6653–6657. https://doi.org/10.1002/adma.201402360

    Article  CAS  PubMed  Google Scholar 

  7. Nuasaen S, Tangboriboonrat P (2015) Optical properties of hollow latex particles as white pigment in paint film. Prog Org Coat 79:83–89. https://doi.org/10.1016/j.porgcoat.2014.11.012

    Article  CAS  Google Scholar 

  8. Wang F, Guo L, Qiu T, Ye J, He L, Li X (2019) A direct polymerization approach toward hindered phenol/polymer composite latex and its application for waterborne damping coating. Prog Org Coat 130:1–7. https://doi.org/10.1016/j.porgcoat.2019.01.032

    Article  CAS  Google Scholar 

  9. Fitch RM (1997) Polymer colloids: a comprehensive introduction. Academic Press, California

    Google Scholar 

  10. Norde W (2003) Colloids and interfaces in life science. Marcel Dekker, New York

    Book  Google Scholar 

  11. Elaïssari A (2008) Colloidal nanoparticles in biotechnology. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  12. Ohtsu Y, Ohba R, Imamura Y, Kobayashi M, Zenkoh H, Hatakeyama M, Manabe T, Hino M, Yamaguchi Y, Kataoka K, Kawaguchi H (2005) Selective ligand purification using high-performance affinity beads. Anal Biochem 338:245–252. https://doi.org/10.1016/j.ab.2004.10.006

    Article  CAS  PubMed  Google Scholar 

  13. Oba S, Hatakeyama M, Handa H, Kawaguchi H (2005) Development of polymer latex particles for selective cleavage of mismatched DNA and their application for DNA diagnosis. Bioconjug Chem 16:551–558. https://doi.org/10.1021/bc049728l

    Article  CAS  PubMed  Google Scholar 

  14. Yordanov G, Simeonova M, Alexandrova R, Yoshimura H, Dushkin C (2009) Quantum dots tagged poly(alkylcyanoacrylate) nanoparticles intended for bioimaging applications. Colloids Surf A 339:199–205. https://doi.org/10.1016/j.colsurfa.2009.02.027

    Article  CAS  Google Scholar 

  15. Goto Y, Matsuno R, Konno T, Takai M, Ishihara K (2009) Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes. Biomacromol 9:3252–3257. https://doi.org/10.1021/bm800819r

    Article  CAS  Google Scholar 

  16. Pan J, eng S.-S, (2009) Targeting and imaging cancer cells by Folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183. https://doi.org/10.1016/j.biomaterials.2008.10.039

    Article  CAS  PubMed  Google Scholar 

  17. Mittal V (2010) Advanced polymer nanoparticles: synthesis and surface modifications. CRC Press, Florida

    Book  Google Scholar 

  18. Sarı MM, Armutcu C, Bereli N, Uzun L, Denizli A (2011) Monosize microbeads for pseudo-affinity adsorption of human insulin. Colloids Surf B 84:140–147. https://doi.org/10.1016/j.colsurfb.2010.12.025

    Article  CAS  Google Scholar 

  19. Kohri M, Abo F, Miki S, Fujii T, Kasuya M, Taniguchi T (2013) Effects of graft shell thickness and compositions on lectin recognition of glycoparticles. J Colloid Sci Biotechnol 2:42–52. https://doi.org/10.1166/jcsb.2013.1028

    Article  CAS  Google Scholar 

  20. Antonietti M, Landfester K (2002) Polyreactions in miniemulsion. Prog Polym Sci 27:689–757. https://doi.org/10.1016/S0079-6700(01)00051-X

    Article  CAS  Google Scholar 

  21. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346. https://doi.org/10.1016/S0079-6700(02)00010-2

    Article  CAS  Google Scholar 

  22. Chern C-S (2008) Principles and applications of emulsion polymerization. Wiley, New Jersey

    Book  Google Scholar 

  23. Chern C-S, Y.-C. Liou Y.-C, (1999) Styrene miniemulsion polymerization initiated by 2,2’-azobisisobutyronitrile. J Polym Sci Part A: Polym Chem 37:2537–2550. https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14%3c2537::AID-POLA27%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  24. Chern C-S, Sheu J-C (2000) Effects of 2-hydroxyalkyl methacrylates on the styrene miniemulsion polymerizations stabilized by SDS and alkyl methacrylates. J Polym Sci Part A: Polym Chem 38:3188–3199. https://doi.org/10.1002/1099-0518(20000901)38:17%3c3188::AID-POLA180%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  25. Chern C-S, Sheu J-C (2001) Effects of carboxylic monomers on the styrene miniemulsion polymerizations stabilized by SDS/alkyl methacrylates. Polymer 42:2349–2357. https://doi.org/10.1016/S0032-3861(00)00608-X

    Article  CAS  Google Scholar 

  26. Mittal V (2011) Polymer nanocomposites by emulsion and suspension polymerization. RSC Publishing, Cambridge

    Google Scholar 

  27. Pichot C, Taniguchi T, Delair Th, Elaïssari A (2003) Functionalized thermosensitive latex particles: Useful tools for diagnostics. J Dispersion Sci Tech 24:423–437. https://doi.org/10.1081/DIS-120021799

    Article  CAS  Google Scholar 

  28. Pichot C (2004) Surface-functionalized latexes for biotechnological applications. Curr Opin Colloid Interface Sci 9:213–221. https://doi.org/10.1016/j.cocis.2004.07.001

    Article  CAS  Google Scholar 

  29. Tsarevsky NV, Sumerlin BS (2013) Fundamentals of controlled/living radical polymerization. RSC Publishing, Cambridge

    Book  Google Scholar 

  30. Kamigaito M, Sawamoto M (2020) Synergistic advances in living cationic and radical polymerizations. Macromolecules 53:6749–6753. https://doi.org/10.1021/acs.macromol.0c01392

    Article  CAS  Google Scholar 

  31. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990. https://doi.org/10.1021/cr940534g

    Article  CAS  PubMed  Google Scholar 

  32. Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3746. https://doi.org/10.1021/cr9901182

    Article  CAS  PubMed  Google Scholar 

  33. Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T (1998) Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques. Macromolecules 31:5934–5936. https://doi.org/10.1021/ma980240n

    Article  CAS  Google Scholar 

  34. Kim J-B, Bruening M, L, Baker G. L, (2000) Surface-initiated atom transfer radical polymerization on gold at ambient temperature. J Am Chem Soc 122:7616–7617. https://doi.org/10.1021/ja001652q

    Article  CAS  Google Scholar 

  35. Xu FJ, Zhao JP, Kang ET, Neoh KG, Li J (2007) Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization. Langmuir 23:8585–8592. https://doi.org/10.1021/la7011342

    Article  CAS  PubMed  Google Scholar 

  36. Matrab T, Save M, Charleux B, Pinson J, Cabet-Deliry E, Adenier A, Chemi M, Delamar M (2007) Grafting densely-packed poly(n-butyl methacrylate) chains from an iron substrate by aryl diazonium surface-initiated ATRP: XPS monitoring. Surf Sci 601:2357–2366. https://doi.org/10.1016/j.susc.2007.03.046

    Article  CAS  Google Scholar 

  37. Kim S, Sikes HD (2020) Radical polymerization reactions for amplified biodetection signals. Polym Chem 1:1424–1444. https://doi.org/10.1039/C9PY01801H

    Article  Google Scholar 

  38. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 31:5559–5562. https://doi.org/10.1021/ma9804951

    Article  CAS  Google Scholar 

  39. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410. https://doi.org/10.1071/CH05072

    Article  CAS  Google Scholar 

  40. Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  41. Motokawa R, Taniguchi T, Sasaki Y, Enomoto Y, Murakami F, Kasuya M, Kohri M, Nakahira T (2012) Small-angle neutron scattering study on specific polymerization loci induced by copolymerization of polymerizable surfactant and styrene during miniemulsion polymerization. Macromolecules 45:9435–9444. https://doi.org/10.1021/ma301776b

    Article  CAS  Google Scholar 

  42. Perrier S (2017) 50th anniversary perspective: RAFT polymerization: A user guide. Macromolecules 50:7433–7447. https://doi.org/10.1021/acs.macromol.7b00767

    Article  CAS  Google Scholar 

  43. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688. https://doi.org/10.1021/cr990119u

    Article  CAS  PubMed  Google Scholar 

  44. Colombani D, Steenbock M, Klapper M, Müllen K (1997) 1,3,5,5-tetraphenyl-Δ3-1,2,4-triazolin-2-yl radical-properties in the controlled radical polymerization of poly(methyl methacrylate) and polystyrene. Macromol Rapid Commun 18:243–251. https://doi.org/10.1002/marc.1997.030180305

    Article  CAS  Google Scholar 

  45. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 26:2987–2988. https://doi.org/10.1021/ma00063a054

  46. Matyjaszewski K, Gaynor SG, Kulfan A, Podwika M (1997) Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in “living” radical polymerizations. Macromolecules 30:5192–5194. https://doi.org/10.1021/ma970359g

    Article  CAS  Google Scholar 

  47. Guerrini MM, Charleux B, Vairon J-P (2000) Functionalized polystyrene latex particles as substrates for ATRP: Surface and colloidal characterization. Macromol Rapid Commun 21:669–674

    Article  CAS  Google Scholar 

  48. Taniguchi T, Kasuya M, Kunisada Y, Miyai T, Nagasawa H, Nakahira T (2009) Surface modification of polymer latex particles by AGET ATRP of a styrene derivative bearing a lactose residue. Colloids Surfaces B: Biointerfaces 71:194–199. https://doi.org/10.1016/j.colsurfb.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  49. Taniguchi T, Kashiwakura T, Inada T, Kunisada Y, Kasuya M, Kohri M, Nakahira T (2010) Preparation of organic/inorganic composites by deposition of silica onto shell layers of polystyrene (core)/poly[2-(N,N-dimethylamino)ethyl methacrylate] (shell) particles. J Colloid Interface Sci 347:62–68. https://doi.org/10.1016/j.jcis.2010.03.019

    Article  CAS  PubMed  Google Scholar 

  50. Taniguchi T, Murakmi F, Kasuya M, Kojima T, Kohri M, Saito K, Nakahira T (2013) Preparation of titania hollow particles with independently controlled void size and shell thickness by catalytic templating core–shell polymer particles. Colloid Polym Sci 291:215–222. https://doi.org/10.1007/s00396-012-2658-2

    Article  CAS  Google Scholar 

  51. Kasuya M, Taniguchi T, Motokawa R, Kohri M, Kishikawa K, Nakahira T (2013) Quantification of ATRP initiator density on polymer latex particles by fluorescence labeling technique using copper-catalyzed azide-alkyne cycloaddition. J Polym Sci A: Polym Chem 51:4042–4051. https://doi.org/10.1002/pola.26800

    Article  CAS  Google Scholar 

  52. Kasuya M, Taniguchi T, Kohri M, Kishikawa K, Nakahira T (2014) Preparation of polymer latex particles carrying salt-responsive fluorescent graft chains. Polymer 55:5080–5087. https://doi.org/10.1016/j.polymer.2014.08.030

    Article  CAS  Google Scholar 

  53. Yamagami T, Kitayama Y, Okubo M (2014) Preparation of stimuli-responsive “mushroom-like” Janus polymer particles as particulate surfactant by site-selective surface-initiated AGET ATRP in aqueous dispersed systems. Langmuir 30:7823–7832. https://doi.org/10.1021/la501266t

    Article  CAS  PubMed  Google Scholar 

  54. Taniguchi T, Kunisada Y, Shinohara M, Kasuya M, Ogawa T, Kohri M, Nakahira T (2010) Preparation of glycopolymer hollow particles by sacrificial dissolution of colloidal templates. Colloids Surfaces A: Physicochem Eng Aspects 369:240–245. https://doi.org/10.1016/j.colsurfa.2010.08.030

    Article  CAS  Google Scholar 

  55. Kohri M, Sato M, Abo F, Inada T, Kasuya M, Taniguchi T, Nakahira T (2011) Preparation and lectin binding specificity of polystyrene particles grafted with glycopolymers bearing S-linked carbohydrates. Eur Polym J 47:2351–2360. https://doi.org/10.1016/j.eurpolymj.2011.09.016

    Article  CAS  Google Scholar 

  56. Taniguchi T, Obi S, Kamata Y, Kashiwakura T, Kasuya M, Ogawa T, Kohri M, Nakahira T (2012) Preparation of organic/inorganic hybrid and hollow particles by catalytic deposition of silica onto core/shell heterocoagulates modified with poly[2-(N, N-dimethylamino)ethyl methacrylate]. J Colloid Interface Sci 368:107–114. https://doi.org/10.1016/j.jcis.2011.11.077

    Article  CAS  PubMed  Google Scholar 

  57. Coessens V, Nakagawa Y, Matyjaszewski K (1998) Synthesis of azido end-functionalized polyacrylates via atom transfer radical polymerization. Polym Bull 40:135–142. https://doi.org/10.1007/s002890050234

    Article  CAS  Google Scholar 

  58. Coessens V, Pyun J, Miller PJ, Gaynor SG, Matyjaszewski K (2000) Functionalization of polymers prepared by ATRP using radical addition reactions. Macromol Rapid Commun 21:103–109. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:2%3c103::AID-MARC103%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  59. Snijder A, Klumperman B, Linde RVD (2002) End-group modification of poly(butyl acrylate) prepared by atom transfer radical polymerization: mechanistic study using gradient polymer elution chromatograph. J Polym Sci A: Polym Chem 40:2350–2359. https://doi.org/10.1002/pola.10321

    Article  CAS  Google Scholar 

  60. Postma A, Davis TP, Moad G, O’Shea MS. Approaches to phthalimido and amino end-functional polystyrene by atom transfer radical polymerisation (ATRP). React Funct Polym 66:137–147. https://doi.org/10.1016/j.reactfunctpolym.2005.07.012

  61. Gutekunst WR, Anastasaki A, Lunn DJ, Truong NP, Whitfield R, Jones GR, Treat NJ, Abdilla A, Barton BE, Clark PG, Haddleton DM, Davis TP, Hawker CJ (2017) Practical chain-end reduction of polymers obtained with ATRP. Macromol Chem Phys 218:1700107. https://doi.org/10.1002/macp.201700107

    Article  CAS  Google Scholar 

  62. Lunn DJ, Discekici EH, Alaniz JR, Gutekunst WR, Hawker CJ (2017) Established and emerging strategies for polymer chain-end modification. J Polym Sci A: Polym Chem 55:2903–2914. https://doi.org/10.1002/pola.28575

    Article  CAS  Google Scholar 

  63. Taniguchi T, Takeuchi N, Kobaru S, Nakahira T (2008) Preparation of highly monodisperse fluorescent polymer particles by miniemulsion polymerization of styrene with a polymerizable surfactant. J Colloid Interface Sci 327:58–62. https://doi.org/10.1016/j.jcis.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  64. Fukushima H, Kohri M, Kojima T, Taniguchi T, Saito K, Nakahira T (2012) Surface-initiated enzymatic vinyl polymerization: synthesis of polymer-grafted silica particles using horseradish peroxidase as catalyst. Polym Chem 3:1123–1125. https://doi.org/10.1039/C2PY20036H

    Article  CAS  Google Scholar 

  65. Kohri M, Kobayashi A, Fukushima H, Taniguchi T, Nakahira T (2012) Effect of surfactant type on enzymatic miniemulsion polymerization using horseradish peroxidase as a catalyst. Chem Lett 41:1131–1133. https://doi.org/10.1246/cl.2012.1131

    Article  CAS  Google Scholar 

  66. Kohri M, Uzawa S, Kobayashi A, Fukushima H, Taniguchi T, Nakahira T (2013) Enzymatic emulsifier-free emulsion polymerization to prepare polystyrene particles using horseradish peroxidase as a catalyst. Polym J 45:354–358. https://doi.org/10.1038/pj.2012.129

    Article  CAS  Google Scholar 

  67. Aikawa T, Mizuno A, Kohri M, Taniguchi T, Kishikawa K, Nakahira T (2016) Polystyrene latex particles containing europium complexes prepared by miniemulsion polymerization using bovine serum albumin as a surfactant for biochemical diagnosis. Colloids Surfaces B: Biointerfaces 145:152–159. https://doi.org/10.1016/j.colsurfb.2016.04.055

    Article  CAS  PubMed  Google Scholar 

  68. Postma A, Davis TP, Moad G, O’Shea MS (2006) Approaches to phthalimido and amino end-functional polystyrene by atom transfer radical polymerisation (ATRP). React Funct Polym 66:137–147. https://doi.org/10.1016/j.reactfunctpolym.2005.07.012

    Article  CAS  Google Scholar 

  69. Long J, Osmond D, Vincent B (1973) The equilibrium aspects of weak flocculation. J Colloid Interface Sci 42(1973):545–553. https://doi.org/10.1016/0021-9797(73)90040-4

    Article  CAS  Google Scholar 

  70. Mason WT (1999) Fluorescent and luminescent probes for biological activity: a practical guide to technology for quantitative real-time analysis, 2nd edn. Elesevier, Oxford

    Google Scholar 

  71. Worsfold P, Townshend A, Poole C (2005) Encyclopedia of analytical science, 2nd edn. Elesevier, Oxford

    Google Scholar 

  72. Tsujii Y, Ohno K, Yamamoto S, Goto A (2006) Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45. https://doi.org/10.1007/12_063

    Article  CAS  Google Scholar 

  73. Kizhakkedathu JN, Janzen J, Le Y, Kainthan RK, Brooks DE (2009) Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma. Langmuir 25:3794–3801. https://doi.org/10.1021/la803690q

    Article  CAS  PubMed  Google Scholar 

  74. Taniguchi T, Duracher D, Delair Th, Elaïssari A, Pichot C (2003) Adsorption/desorption behavior and covalent grafting of an antibody onto cationic amino-functionalized poly(styrene-N-isopropylacrylamide) core-shell latex particles. Colloids Surfaces B: Biointerfaces 29:53–65. https://doi.org/10.1016/S0927-7765(02)00176-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shin-Nakamura Chemicals and LSI Medience for providing the reagents.

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research (JSPS KAKENHI Grant Numbers JP21K05164).

Author information

Authors and Affiliations

Authors

Contributions

Yusuke Sasaki: Investigation, formal analysis, writing — original draft, Naho Konishi: Investigation, formal analysis, Michinari Kohri: Supervision, Tatsuo Taniguchi: Conceptualization, methodology, writing — original draft, editing, supervision, project administration, funding acquisition, Keiki Kishikawa: Supervision, Takashi Karatsu: Supervision.

Corresponding author

Correspondence to Tatsuo Taniguchi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors approved participation in this study.

Consent for publication

All authors approved publication of this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12664 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, Y., Konishi, N., Kohri, M. et al. Synthesis of luminescent core–shell polymer particles carrying amino groups for covalent immobilization of enzymes. Colloid Polym Sci 300, 319–331 (2022). https://doi.org/10.1007/s00396-021-04913-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04913-7

Keywords

Navigation