Skip to main content
Log in

Rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions (MWCNT/SiO2-STFs) with different concentrations were investigated. Through scanning electron microscopy, it was found that the MWCNTs had a strong adsorption on silica nanoparticles, and a “new particle group” containing MWCNTs was formed in the samples. The rheological results demonstrate that MWCNT/SiO2-STFs have significant shear thinning and shear thickening phenomena, and when the mass fraction of MWCNTs is 0.8%, the STFs have the best shear thickening performance; the viscosity increases by 191% while the critical shear rate decreases by 60.19%. The results also reveal that the rheological property of MWCNT/SiO2-STFs is effectively improved by increasing the plate spacing, particularly when their mass fraction is low. Moreover, the temperature sensitivity of MWCNT/SiO2-STFs is still dominated by the silica nanoparticles. Without affecting their temperature sensitivity, the MWCNTs can significantly enhance the shear thickening performance of silica-based STFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang P, Zhang X, Lim G, Neo H, Malcolm AA, Xiang Y, Lu G, Yang J (2015) Improvement of impact-resistant property of glass fiber-reinforced composites by carbon nanotube-modified epoxy and pre-stretched fiber fabrics. J Mater Sci 50(18):5978–5992. https://doi.org/10.1007/s10853-015-9145-3

    Article  CAS  Google Scholar 

  2. Wei M, Hu G, Li L, Liu H (2018) Development and theoretically evaluation of an STF–SF isolator for seismic protection of structures. Meccanica 53(4–5):1–16

    Google Scholar 

  3. Jiang W, Ye F, He Q, Gong X, Feng J, Lu L, Xuan S (2014) Study of the particles’ structure dependent rheological behavior for polymer nanospheres based shear thickening fluid. J Colloid Interface Sci 413:8–16

    Article  CAS  Google Scholar 

  4. Waitukaitis SR, Jaeger HM (2012) Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487(7406):205–209

    Article  CAS  Google Scholar 

  5. Wei M, Sun L, Zhang C, Qi P, Zhu J (2019) Shear-thickening performance of suspensions of mixed ceria and silica nanoparticles. J Mater Sci 54(1):346–355. https://doi.org/10.1007/s10853-018-2873-4

    Article  CAS  Google Scholar 

  6. Majumdar A, Laha A (2016) Effects of fabric construction and shear thickening fluid on yarn pull-out from high-performance fabrics. Text Res J 86(19):2056–2066. https://doi.org/10.1177/0040517515619357

    Article  CAS  Google Scholar 

  7. Li S, Wang Y, Ding J, Wu H, Fu Y (2014) Effect of shear thickening fluid on the sound insulation properties of textiles. Text Res J 84(9):897–902

    Article  CAS  Google Scholar 

  8. Zielinska D, Delczyk-Olejniczak B, Wierzbicki L, Wilbik-Hałgas B, Struszczyk MH, Leonowicz M (2014) Investigation of the effect of para-aramid fabric impregnation with shear thickening fluid on quasi-static stab resistance. Text Res J 84(15):1569–1577

    Article  Google Scholar 

  9. Wei M, Hu G, Jin L, Lin K, Zou D (2016) Forced vibration of a shear thickening fluid sandwich beam. Smart Mater Struct 25(5):055041

    Article  Google Scholar 

  10. Yeh F-Y, Chang K-C, Chen T-W, Yu C-H (2014) The dynamic performance of a shear thickening fluid viscous damper. J Chin Inst Eng 37(8):983–994

    Article  CAS  Google Scholar 

  11. Tian T, Nakano M (2017) Design and testing of a rotational brake with shear thickening fluids. Smart Mater Struct 26(3):035038

    Article  Google Scholar 

  12. Egres RG, Wagner NJ (2005) The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol 49(3):719–746

    Article  CAS  Google Scholar 

  13. Barnes HA (1989) Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366. https://doi.org/10.1122/1.550017

    Article  CAS  Google Scholar 

  14. Kamibayashi M, Ogura H, Otsubo Y (2008) Shear-thickening flow of nanoparticle suspensions flocculated by polymer bridging. J Colloid Interface Sci 321(2):294–301

    Article  CAS  Google Scholar 

  15. Tian T, Peng G, Li W, Ding J, Nakano M (2015) Experimental and modelling study of the effect of temperature on shear thickening fluids. Korea-Aust Rheol J 27(1):17–24

    Article  Google Scholar 

  16. Wagner NJ, Brady JF (2009) Shear thickening in colloidal dispersions. Phys Today 62(10):27–32

    Article  CAS  Google Scholar 

  17. Liu X-Q, Bao R-Y, Wu X-J, Yang W, Xie B-H, Yang M-B (2015) Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv 5(24):18367–18374

    Article  CAS  Google Scholar 

  18. Huang WC, Wu YZ, Qiu L, Dong CK, Ding J, Li D (2015) Tuning rheological performance of silica concentrated shear thickening fluid by using graphene oxide. Adv Condens Matter Phys. https://doi.org/10.1155/2015/734250

    Article  Google Scholar 

  19. Laha A, Majumdar A (2016) Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics. Appl Clay Sci 132:468–474

    Article  Google Scholar 

  20. Ghosh A, Chauhan I, Majumdar A, Butola BS (2017) Influence of cellulose nanofibers on the rheological behavior of silica-based shear-thickening fluid. Cellulose 24(10):4163–4171

    Article  CAS  Google Scholar 

  21. Jiang W, Sun Y, Xu Y, Peng C, Gong X, Zhang Z (2010) Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures. Rheol Acta 49(11–12):1157–1163

    Article  CAS  Google Scholar 

  22. Xu Y-l, Gong X-l, Peng C, Sun Y-q, Jiang W-Q, Zhang Z (2010) Shear thickening fluids based on additives with different concentrations and molecular chain lengths. Chin J Chem Phys 23(3):342

    Article  CAS  Google Scholar 

  23. Qin J, Zhang G, Shi X, Tao M (2015) Study of a shear thickening fluid: the dispersions of silica nanoparticles in 1-butyl-3-methylimidazolium tetrafluoroborate. J Nanopart Res 17(8):333

    Article  Google Scholar 

  24. Ge JH, Tan ZH, Li WH, Zhang H (2017) The rheological properties of shear thickening fluid reinforced with SiC nanowires. Results Phys 7:3369–3372. https://doi.org/10.1016/j.rinp.2017.08.065

    Article  Google Scholar 

  25. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM (2018) Composites with carbon nanotubes and graphene: an outlook. Science 362(6414):547–553

    Article  CAS  Google Scholar 

  26. Yang C-K, Lee Y-R, Hsieh T-H, Chen T-H, Cheng T-C (2018) Mechanical property of multiwall carbon nanotube reinforced polymer composites. Polym Polym Compos 26(1):99–104

    CAS  Google Scholar 

  27. Liu Y, Yin J, Liu X, Zhao X, Chen M, Li J, Zhao H, Zhu C, Su B (2019) Fabrication of polymer composite films with carbon composite nanofibers doped MWNTs-OH for multilevel memory device application. Compos Part B 156:252–258

    Article  CAS  Google Scholar 

  28. Livanov K, Jelitto H, Schneider GA, Wagner HD (2018) The role of carbon and tungsten disulphide nanotubes in the fracture of polymer-interlayered ceramic composites: a microscopy study. J Mater Sci 53(8):5879–5890

    Article  CAS  Google Scholar 

  29. Zheng X, Huang Y, Zheng S, Liu Z, Yang M (2019) Improved dielectric properties of polymer-based composites with carboxylic functionalized multiwalled carbon nanotubes. J Thermoplast Compos Mater 32(4):473–486

    Article  CAS  Google Scholar 

  30. Gürgen S, Li W, Kuşhan MC (2016) The rheology of shear thickening fluids with various ceramic particle additives. Mater Des 104:312–319

    Article  Google Scholar 

Download references

Funding

The authors acknowledge financial support from National Key R&D Program of China (Grant No. 2018YFC1504303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Lv, Y., Sun, L. et al. Rheological properties of multi-walled carbon nanotubes/silica shear thickening fluid suspensions. Colloid Polym Sci 298, 243–250 (2020). https://doi.org/10.1007/s00396-020-04599-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04599-3

Keywords

Navigation