Skip to main content

Advertisement

Log in

Improved self-healing properties and crack growth resistance of polydimethylsiloxane elastomers with dual-capsule room-temperature healing systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Two types of microcapsules were prepared by in situ polymerization with poly(urea-formaldehyde) (PUF) as the shell material. The core materials of the microcapsules contained Sylgard 184A gum (labeled as capsule I) and hydrogen silicone oil (labeled as capsule II). Capsule types I and II were characterized by optical microscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Capsule types I and II were incorporated into silicone rubber polydimethylsiloxane (PDMS) at an appropriate proportion to construct a self-healing system. The healing efficiency initially increases and then decreases with the increased proportion and addition of the two capsules. The maximum self-healing efficiency is obtained with a value of 70.5% by the incorporation of 10 wt% miscellaneous microcapsules when the weight proportion of capsule types II and I is 0.6. Cracks in the PDMS/capsule composites almost disappear with an increased healing time of up to 24 h at room temperature, indicating improved healing properties with a prolonged healing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Potier F, Guinault A, Delalande S, Sanchez C, Ribot F, Rozes L (2014) Nano-building block based-hybrid organic-inorganic copolymers with self-healing properties. Polym Chem 5(15):4474–4479

    CAS  Google Scholar 

  2. Osato R, Sako T, Seemork J, Arayachukiat S, Nobukawa S, Yamaguchi M (2016) Self-healing properties of poly(ethylene-co-vinyl acetate). Colloid Polym Sci 294(3):537–543

    CAS  Google Scholar 

  3. An S, Lee MW, Yarin AL, Yoon SS (2018) A review on corrosion-protective extrinsic self-healing: comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem Eng J 344:206–220

    CAS  Google Scholar 

  4. Frisch H, Marschner D, Goldmann A, Barner-Kowollik C (2018) Wavelength gated dynamic covalent chemistry. Angew Chem Int Ed 57(8):2036–2045

    CAS  Google Scholar 

  5. Hernandez M, Bernal MDM, Grande A, Nan Z, Zwaag SVD, Garcia S, Hernandez M, Bernal MDM, Grande A, Nan Z (2017) Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber. Smart Mater Struct 26(2):0850108

    Google Scholar 

  6. Hager MD, Peter G, Christoph L, Sybrand VDZ, Schubert US (2010) Self-healing materials. Adv Mater 22(47):5424–5430

    CAS  PubMed  Google Scholar 

  7. Dahlke J, Zechel S, Hager MD, Schubert US (2018) How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials. Advanced materials Interfaces:1800051

    Google Scholar 

  8. Zhang ZP, Rong MZ, Zhang MQ (2018) Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog Polym Sci 80:39–93

    CAS  Google Scholar 

  9. Xiao K, Liu G, Xia D, Liu X, Xu J, Wang D (2015) Facile fabrication of fast recyclable and multiple self-healing epoxy materials through diels-alder adduct cross-linker. J Polym Sci Part A Polym Chem 53(18):2094–2103

    Google Scholar 

  10. Bian W, Wang W, Yang Y (2017) A self-healing and electrical-tree-inhibiting epoxy composite with hydrogen-bonds and SiO2 particles. Polymers 9(9):431

    PubMed Central  Google Scholar 

  11. Florian H, Diana DH, Philipp M, Binder WH (2013) Self-healing polymers via supramolecular forces. Macromol Rapid Commun 34(3):203–220

    Google Scholar 

  12. Corte L, Maes F, Montarnal D, Cantournet S, Tournilhac F, Leibler L (2012) Activation-deactivation of self-healing in supramolecular rubbers. Soft Matter 8(5):1681–1687

    Google Scholar 

  13. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    CAS  PubMed  Google Scholar 

  14. Zhang R, Yan T, Lechner BD, Schröter K, Saalwächter K (2013) Heterogeneity, segmental and hydrogen bond dynamics, and aging of supramolecular self-healing rubber. Macromolecules 46(5):1841–1850

    CAS  Google Scholar 

  15. Zhang A, Lin Y, Lin Y, Yan L, Lu H, Wang L (2013) Self-healing supramolecular elastomers based on the multi-hydrogen bonding of low-molecular polydimethylsiloxanes: synthesis and characterization. J Appl Polym Sci 129(5):2435–2442

    CAS  Google Scholar 

  16. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    CAS  PubMed  Google Scholar 

  17. Ullah H, Azizi K, Man ZB, Ismail MBC, Khan I (2016) The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review. Polym Rev 56(3):429–485

    CAS  Google Scholar 

  18. Keller MW, White SR, Sottos NR (2008) Torsion fatigue response of self-healing poly(dimethylsiloxane) elastomers. Polymer 49(13–14):3136–3145

    CAS  Google Scholar 

  19. Keller MW, White SR, Sottos NR (2007) A self-healing poly(dimethyl siloxane) elastomer. Adv Funct Mater 17(14):2399–2404

    CAS  Google Scholar 

  20. Beiermann BA, Keller MW, Sottos NR (2009) Self-healing flexible laminates for resealing of puncture damage. Smart Mater Struct 18(8):85001–85007

    Google Scholar 

  21. Lenhardt JM, Kim SH, Nelson AJ, Singhal P, Baumann TF, Jr JHS (2013) Increasing the oxidative stability of poly(dicyclopentadiene) aerogels by hydrogenation. Polymer 54(2):542–547

    CAS  Google Scholar 

  22. Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39(5):1703–1710

    CAS  Google Scholar 

  23. Mauldin TC, Rule JD, Sottos NR, White SR, Moore JS (2007) Self-healing kinetics and the stereoisomers of dicyclopentadiene. J R Soc Interface 4(13):389–393

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wilson GO, Moore JS, White SR, Sottos NR, Andersson HM (2008) Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv Funct Mater 18(1):44–52

    CAS  Google Scholar 

  25. Moll JL, White SR, Sottos NR (2010) A self-sealing fiber-reinforced composite. J Compos Mater 44(22):2573–2585

    CAS  Google Scholar 

  26. Jin H, Mangun CL, Stradley DS, Moore JS, Sottos NR, White SR (2012) Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polymer 53(2):581–587

    CAS  Google Scholar 

  27. Yan CY, Ye Y, Min ZR, Chen H, Wu J, Ming QZ, Shi XQ, Gui CY (2011) Self-healing of low-velocity i mpact damage in glass fabric/epoxy composites using an epoxy–mercaptan healing agent. Smart Mater Struct 20(1):015024

    Google Scholar 

  28. Yan CY, Min ZR, Ming QZ, Jian C, Gui CY, Xue ML (2008) Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules 41(14):5197–5202

    Google Scholar 

  29. Caruso MM, Delafuente DA, Ho V, Sottos NR, White SR (2007) Solvent-promoted self-healing epoxy materials. Macromolecules 40(25):8830–8832

    CAS  Google Scholar 

  30. Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS (2008) Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Adv Funct Mater 18(13):1898–1904

    CAS  Google Scholar 

  31. Kessler MR, Sottos NR, White SR (2003) Self-healing structural composite materials. Compos Part A, Appl Sci Manuf 34(8):743

    Google Scholar 

  32. Jones AS, Rule JD, Moore JS, Sottos NR, White SR (2007) Life extension of self-healing polymers with rapidly growing fatigue cracks. J R Soc Interface 4(13):395–403

    CAS  PubMed  Google Scholar 

  33. Cho SH, Andersson HM, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18(18):997–1000

    CAS  Google Scholar 

  34. Cho SH, White SR, Braun PV (2012) Room-temperature polydimethylsiloxane-based self-healing polymers. Chem Mater 24(21):4209–4214

    CAS  Google Scholar 

  35. Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20(6):719–730

    CAS  PubMed  Google Scholar 

  36. Johnston ID, Mccluskey DK, Tan CKL, Tracey MC (2014) Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J Micromech Microeng 24(3):10–11

    Google Scholar 

  37. Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A (2018) Desktop-stereolithography 3D-printing of a poly(dimethylsiloxane)-based material with Sylgard-184 properties. Adv Mater 30(22):1800001

    Google Scholar 

  38. Daniela R, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475

    Google Scholar 

  39. Park S, Mondal K, Treadway RM, Kumar V, Ma S, Holbery JD, Dickey MD (2018) Silicones for stretchable and durable soft devices: beyond Sylgard-184. ACS Appl Mater Interfaces 10(13):11261–11268

    CAS  PubMed  Google Scholar 

  40. Lv C, Zhao K, Zheng J (2018) A highly stretchable self-healing poly(dimethylsiloxane) elastomer with reprocessability and degradability. Macromol Rapid Commun 39(8):1700686

    Google Scholar 

  41. Su JF, Huang Z, Ren L (2007) High compact melamine-formaldehyde microPCMs containing n-octadecane fabricated by a two-step coacervation method. Colloid Polym Sci 285(14):1581–1591

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (51103048), the Joint Fund of Ministry of Education (6141A020332017), the Guangdong Natural Science Foundation Project (2018A0303130023), the Fundamental Research Funds for the Central Universities (2018KZ07), and Guangzhou Industrial Technology Key Project (201902010059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 3599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Guo, J., Qiao, J. et al. Improved self-healing properties and crack growth resistance of polydimethylsiloxane elastomers with dual-capsule room-temperature healing systems. Colloid Polym Sci 298, 67–77 (2020). https://doi.org/10.1007/s00396-019-04587-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04587-2

Keywords

Navigation