Skip to main content
Log in

Effect of cationic polyelectrolyte poly(diallyldimethylammonium chloride) on micellization behavior of anionic surface active ionic liquid 1-butyl-3-methylimidazolium dodecylsulfate [C4mim][C12SO4] in aqueous solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The binding interactions of an anionic surface active ionic liquid (SAIL) 1-butyl-3-methylimidazolium dodecylsulfate [C4mim][C12SO4] with cationic polyelectrolyte poly(diallyldimethylammonium chloride) (PDAC) in aqueous media have been critically assessed using multitechnique approaches, viz. conductometry, tensiometry, fluorimetry, dynamic light scattering, rheometry, and turbidity. A strong complex formation has been observed between PDAC and [C4mim][C12SO4] at the air-solution surface. At higher concentration of SAIL, [C4mim][C12SO4] interacts with PDAC to form [C4mim][C12SO4]-PDAC networks that precipitate out in bulk. The size determination measurements, i.e., DLS data, prove that the PDAC chains compress prior to the cmc and spread out after cmc due to interactions with SAIL. Fluorescence measurements endow aggregation number of SAIL with or without PDAC. The surface and thermodynamic parameters of micellization have been obtained for all the systems. This investigation gives information about the forces leading to the complexation between PDAC and [C4mim][C12SO4].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goddard ED (2001) Polymer/surfactant interaction: interfacial aspects. J Colloid Interface Sci 256:228–235

    Article  Google Scholar 

  2. Anand K, Yadav OP, Singh PP (1992) Binding studies of sodium dodecyl benzene sulphonate with poly (N-vinyl-2-pyrrolidone). Colloid Polym Sci 270(12):1201–1207

    Article  CAS  Google Scholar 

  3. Hu C, Du Z, Tai X, Mao X, Liu X (2018) The property study of sodium dodecyl benzenesulfonate and polyvinylpyrrolidone complexes. Colloid Polym Sci 296:335–340

    Article  CAS  Google Scholar 

  4. Taylor DJF, Thomas RK, Penfold J (2007) Polymer/surfactant interactions at the air/water interface. Adv Colloid Interf Sci 132:69–110

    Article  CAS  Google Scholar 

  5. Nylander T, Samoshina Y, Lindman B (2006) Formation of polyelectrolyte–surfactant complexes on surfaces. Adv Colloid Interf Sci 123–126:105–123

    Article  CAS  Google Scholar 

  6. Goddard ED (1994) Polymer/surfactant interaction: its relevance to detergent systems. J Am Oil Chem Soc 71(1):1–16

    Article  CAS  Google Scholar 

  7. Kwak JCT (1998) Polymer–surfactant systems. Surfactant science series (77). New York: Marcel Dekker

  8. Jonsson B, Lindman B, Holmberg K, Kronberg B (1998) Surfactants and polymers in aqueous solution. Wiley, London

    Google Scholar 

  9. Che Y, Tan J, Ren Y, Xin X, Meng HF (2012) Solution properties of hybrophobically modified acrylamide-based polysulfobetaines in the presence of surfactant. Colloid Polym Sci 290(13):1237–1245

    Article  CAS  Google Scholar 

  10. Goddard ED, Ananthapadmanabhan KP (eds.) (1993) Interaction of surfactants with polymers and proteins. CRC: Boca Raton

  11. Kogez K (2010) Association and structure formation in oppositely charged polyelectrolyte–surfactant mixtures. Adv Colloid Interf Sci 158:68–83

    Article  CAS  Google Scholar 

  12. Malmsten M (2002) Surfactants and polymers in drug delivery. Marcel Dekker, New York, p 122

    Book  Google Scholar 

  13. Hwang YJ, Oh C, Oh SG (2005) Controlled release of retinol from silica particles prepared in O/W/O emulsion: the effects of surfactants and polymers. J Control Release 106:339–349

    Article  CAS  PubMed  Google Scholar 

  14. Wasserscheid P, Hal RV, Andreas B (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate an even ‘greener’ ionic liquid. Green Chem 4:400–404

    Article  CAS  Google Scholar 

  15. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc, Chem Commun 965–967

  16. Jiao J, Dong B, Zhang H, Zhao Y, Wang X, Wang R, Yu L (2012) Aggregation behaviors of dodecyl sulfate-based anionic surface active ionic liquids in water. J Phys Chem B 116:958–965

    Article  CAS  PubMed  Google Scholar 

  17. Karodia N, Guise S, Newlands C, Andersen JA (1998) Clean catalysis with ionic solvents phosphonium tosylates for hydroformylation. Chem Commun:2341–2342

  18. Arce A, Rodriguez H, Soto A (2007) Use of a green and cheap ionic liquid to purify gasoline octane boosters. Green Chem 9:247–253

    Article  CAS  Google Scholar 

  19. Harjani JR, Farrell J, Garcia MT, Singer RD, Scammells PJ (2009) Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem 11:821–829

    Article  CAS  Google Scholar 

  20. Miskolczy Z, Krisztina SN, Laszlo B, Sinem G (2004) Aggregation and micelle formation of ionic liquids in aqueous solution. Chem Phys Lett 400:296–300

    Article  CAS  Google Scholar 

  21. Singh T, Drechsler M, Mueller AHE, Mukhopadhyay I, Kumar A (2010) Micellar transitions in the aqueous solutions of a surfactant-like ionic liquid: 1-butyl-3-methylimidazolium octylsulfate. Phys Chem Chem Phys 12:11728–11735

    Article  CAS  PubMed  Google Scholar 

  22. Itoh T, Matsushita Y, Abe Y, Han SH, Wada S, Hayase S, Kawatsura M, Takai S, Morimoto M, Hirose Y (2006) Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG–alkyl sulfate ionic liquid. Chem Eur J 12:9228–9237

    Article  CAS  PubMed  Google Scholar 

  23. Singh T, Boral S, Bohidar HB, Kumar A (2010) Interaction of gelatin with room temperature ionic liquids: a detailed physicochemical study. J Phys Chem B 114:8441–8448

    Article  CAS  PubMed  Google Scholar 

  24. Singh T, Bharmoria P, Morikawa M, Kimizuka N, Kumar A (2012) Ionic liquids induced structural changes of bovine serum albumin in aqueous media: a detailed physicochemical and spectroscopic study. J Phys Chem B 116:11924–11935

    Article  CAS  PubMed  Google Scholar 

  25. Bharmoria P, Singh T, Kumar A (2013) Complexation of chitosan with surfactant like ionic liquids: molecular interactions and preparation of chitosan nanoparticles. J Colloid Interface Sci 470:361–369

    Article  CAS  Google Scholar 

  26. Bharmoria P, Kumar A (2013) Interactional behaviour of surface active ionic liquids with gelling biopolymer agarose in aqueous medium. RSC Adv 3:19600–19608

    Article  CAS  Google Scholar 

  27. Staples E, Tucker I, Penfold J, Warren N, Thomas RK, Taylor DJF (2002) Organization of polymer-surfactant mixtures at the air-water interface: sodium dodecyl sulfate and poly(dimethyldiallylammonium chloride). Langmuir 18:5147–5153

    Article  CAS  Google Scholar 

  28. Campbell RA, Ash PA, Bain CD (2007) Dynamics of adsorption of an oppositely charged polymer-surfactant mixture at the air-water interface: poly(dimethyldiallylammonium chloride) and sodium dodecyl sulfate. Langmuir 23:3242–3253

    Article  CAS  PubMed  Google Scholar 

  29. Nizri G, Lagerge S, Kamyshny A, Major DT, Magdassi S (2008) Polymer–surfactant interactions: binding mechanism of sodium dodecyl sulfate to poly(diallyldimethylammonium chloride). J Colloid Interface Sci 320:74–81

    Article  CAS  PubMed  Google Scholar 

  30. Pal A, Yadav S (2017) Effect of anionic polyelectrolyte sodium carboxymethylcellulose on the aggregation behavior of surface active ionic liquids in aqueous solution. J Mol Liq 241:584–594

    Article  CAS  Google Scholar 

  31. Pal A, Yadav S (2017) Effect of a copolymer poly(4-styrenesufonic acid-co-maleic acid) sodium salt on aggregation behaviour of imidazolium based surface active ionic liquid in aqueous solution. J Mol Liq 246:342–349

    Article  CAS  Google Scholar 

  32. Lisi RD, Inglese S, Milioto PJ (1996) Thermodynamic studies of sodium dodecyl sulfate–sodium dodecanoate mixtures in water. Colloid Interface Sci 180:174–187

    Article  Google Scholar 

  33. Obliosca JM, Arco SD, Huang MH (2007) Synthesis and optical properties of 1-alkyl-3-methylimidazolium lauryl sulfate ionic liquids. J Fluoresc 17:613–618

    Article  CAS  PubMed  Google Scholar 

  34. Inoue T, Ebina H, Dong B, Zheng LQ (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interf Sci 314:236–241

    Article  CAS  Google Scholar 

  35. Jiao J, Zhang Y, Fang L, Yu L, Sun L, Wang R, Cheng N (2013) Electrolyte effect on the aggregation behavior of 1-butyl-3-methylimidazolium dodecylsulfate in aqueous solution. J Colloid Interf Sci 402:139–145

    Article  CAS  Google Scholar 

  36. Taylor DJF, Thomas RK, Li PX, Penfold J (2003) Adsorption of oppositely charged polyelectrolyte/surfactant mixtures. Neutron reflection from alkyl trimethylammonium bromides and sodium poly(styrenesulfonate) at the air/water interface: the effect of surfactant chain length. Langmuir 19:3712–3719

    Article  CAS  Google Scholar 

  37. Vongsetskul T, Taylor DJF, Zhang J, Li PX, Thomas RK, Penfold J (2009) Interaction of a cationic gemini surfactant with DNA and with sodium poly (styrene sulphonate) at the air/water interface: a neutron reflectometry study. Langmuir 25:4027–4035

    Article  CAS  PubMed  Google Scholar 

  38. Bell CG, Breward CJW, Howell PD, Penfold J, Thomas RK (2007) Macroscopic modeling of the surface tension of polymer–surfactant systems. Langmuir 23:6042–6052

    Article  CAS  PubMed  Google Scholar 

  39. Cooke DJ, Dong CC, Lu JR, Thomas RK, Simister EA, Penfold J (1998) Interaction between poly(ethylene oxide) and sodium dodecyl sulfate studied by neutron reflection. J Phys Chem B 102:4912–4917

    Article  CAS  Google Scholar 

  40. Cooke DJ, Blondel JAK, Lu JR, Thomas RK, Wang Y, Han B, Han H, Penfold J (1998) Interaction between poly(ethylene oxide) and monovalent dodecyl sulfates studied by neutron reflection. Langmuir 14:1990–1995

    Article  Google Scholar 

  41. Cooke DJ, Dong CC, Thomas RK, Howe AM, Simister EA, Penfold J (2000) Interaction between gelatin and sodium dodecyl sulfate at the air/water interface: a neutron reflection study. Langmuir 16:6546–6554

    Article  CAS  Google Scholar 

  42. Wang C, Tam KC (2002) New insights on the interaction mechanism within oppositely charged polymer/surfactant systems. Langmuir 18:6484–6490

    Article  CAS  Google Scholar 

  43. Mahajan RK, Sharma R (2011) Analysis of interfacial and micellar behavior of sodium dioctyl sulphosuccinate salt (AOT) with zwitterionic surfactants in aqueous media. J Colloid Interface Sci 363:275–283

    Article  CAS  PubMed  Google Scholar 

  44. Rosen MJ (1989) Surfactants and interfacial phenomena (2nd ed.). New York: Wiley-Interscience

  45. Chakraborty T, Chakraborty I, Ghosh S (2006) Sodium carboxymethylcellulose–CTAB interaction: a detailed thermodynamic study of polymer surfactant interaction with opposite charges. Langmuir 22:9905–9913

    Article  CAS  PubMed  Google Scholar 

  46. Anghel DF, Saito S, Iovescu A, Baran A, Stinga G (2011) Counterion effect of cationic surfactants upon the interaction with poly(methacrylic acid). J Surf Deter 14(1):90–101

    Article  CAS  Google Scholar 

  47. Brown P, Butts CP, Eastoe J, Fermin D, Grillo I, Lee HC, Parker D, Plana D, Richardson RM (2012) Anionic surfactant ionic liquids with 1-Butyl-3-methyl-imidazolium cations: characterization and application. Langmuir 28:2502–2509

    Article  CAS  PubMed  Google Scholar 

  48. Shi LJ, Li N, Yan H, Gao YA, Zheng LQ (2011) Aggregation behavior of long-chain N-aryl imidazolium bromide in aqueous solution. Langmuir 27(5):1618–1625

    Article  CAS  PubMed  Google Scholar 

  49. Shanks PC, Franses E (1992) Estimation of micellization parameters of aqueous sodium dodecyl sulfate from conductivity data. J Phys Chem 96:1794–1805

    Article  CAS  Google Scholar 

  50. Hunter RJ (1989) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

  51. Zhao MW, Zheng LQ (2011) Micelle formation by N-alkyl-N-methylpyrrolidinium bromide in aqueous solution. Phys Chem Chem Phys 13:1332–1337

    Article  CAS  PubMed  Google Scholar 

  52. Rosen MJ (1988) Surfactant and interfacial phenomenon, second ed., Wiley, New York

  53. Karpovich DS, Blanchard GJ (1995) Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J Phys Chem 99:3951–3958

    Article  CAS  Google Scholar 

  54. Ruiz CC, Aguiar J (2000) Interaction, stability, and microenvironmental properties of mixed micelles of triton X100 and n-alkyltrimethylammonium bromides: influence of alkyl chain length. Langmuir 16:7946–7953

    Article  CAS  Google Scholar 

  55. Sharma R, Mahajan S, Mahajan RK (2013) Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids and Surfaces A Physicochem Eng Aspects 427:62–75

    Article  CAS  Google Scholar 

  56. Behera K, Om H, Pandey S (2009) Modifying properties of aqueous cetyltrimethylammonium bromide with external additives: ionic liquid 1-Hexyl-3-methylimidazolium bromide versus cosurfactant n-hexyltrimethylammonium bromide. J Phys Chem B 113:786–793

    Article  CAS  PubMed  Google Scholar 

  57. Pan H, Chen PY, Liu HX, Chen Y, Wei YP, Zhang MJ, Cheng F (2012) Interactions of cellulose-based comb polyelectrolyte with oppositely charged surfactant dodecyl-trimethylammonium bromide. Carbohydr Polym 89:899–905

    Article  CAS  PubMed  Google Scholar 

  58. Kang H, Peng B, Liang Y, Han X, Liu H (2009) Study of the interaction between a diblock polyelectrolyte PDMA-b-PAA and a gemini surfactant 12-6-12 in basic media. J Colloid Interface Sci 333:135–140

    Article  CAS  PubMed  Google Scholar 

  59. Kong LJ, Cao M, Hai MT (2007) Investigation on the interaction between sodium dodecyl sulfate and cationic polymer by dynamic light scattering, rheological, and conductivity measurements. J Chem Eng Data 52:721–726

    Article  CAS  Google Scholar 

  60. Bu H, Kjoniksen AL, Elgsaeter A, Nystrom B (2006) Interaction of unmodified and hybrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution: calorimetric, rheological, and turbidity studies. Colloid Surf A 278(1–3):166–174

    Article  CAS  Google Scholar 

  61. Dan A, Ghosh S, Moulik SP (2009) Physicochemistry of the interaction between inulin and alkyltrimethylammonium bromides in aqueous medium and the formed coacervates. J Phys Chem B 113:8505–8513

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financed by the Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 21(1005)/15/EMR-II), through Emeritus Scientist grant to A. Pal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Yadav, S. Effect of cationic polyelectrolyte poly(diallyldimethylammonium chloride) on micellization behavior of anionic surface active ionic liquid 1-butyl-3-methylimidazolium dodecylsulfate [C4mim][C12SO4] in aqueous solutions. Colloid Polym Sci 296, 1635–1650 (2018). https://doi.org/10.1007/s00396-018-4379-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4379-7

Keywords

Navigation