Skip to main content
Log in

The features of the formation of the hybrid nanostructures of C60 fullerene and amphiphilic copolymer of N-vinylpyrrolidone with (di)methacrylates in isopropyl alcohol and its mixtures with water

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aggregation of the amphiphilic copolymer N-vinylpyrrolidone with lauryl methacrylate and triethylene glycol dimethacrylate in isopropyl alcohol and its mixtures with water was studied by the dynamic light scattering and transmission electron microscopy. It was shown that the aggregation of amphiphilic macromolecules was enhanced at increase of the media polarity. The TEM images of the terpolymer aggregates demonstrated the presence of spherical shape particles with diameter ca. 50 and 300–500 nm after evaporation of isopropyl alcohol and isopropyl alcohol-water mixture of 60:40 vol% composition, respectively. The fullerene hybrid macromolecular structures were produced owing to spontaneous aggregation of the fullerene C60 and the terpolymer colloids. According to dynamic light scattering (DLS), in isopropyl alcohol, the monodisperse C60-copolymer structure was formed in which the fullerene was held by the copolymer particles due to hydrophobic interactions. According to the electronic absorption spectroscopy, the encapsulated fullerene kept its electronic structure in isopropyl alcohol in contrast to the isopropyl alcohol-water mixtures. The fullerene absorption band at λ 330 nm shifted to the red region due to donor-acceptor interaction between the terpolymer and C60, and the absorption band appears in the 400–500-nm region as a result of the fullerene cluster formation in the isopropyl alcohol-water mixtures. Stable macromolecular hybrid nanostructures of the amorphous fullerene produced in isopropyl alcohol were spherical particles and uneven surface. In 60:40 vol% isopropyl alcohol-water mixture, the fullerene as clusters of crystalline nature with a size of ~50 nm was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Erkoc S (2002) Perspectives of fullerene nanotechnology. In: Osawa E (ed) Mater Manuf process, vol 17, pp. 881–883

    Google Scholar 

  2. Bakry R, Vallant RM, Najam-ul-Haq M, Rainer M, Szabo Z, Huck CW, Bonn GK (2007) Medicinal applications of fullerenes. Int J Nanomedicine 2:639–649

    CAS  Google Scholar 

  3. Astefanei A, Núñez O, Galceran MT (2015) Characterisation and determination of fullerenes: a critical review. Anal Chim Acta 882:1–21. doi:10.1016/j.aca.2015.03.025

    Article  CAS  Google Scholar 

  4. Alargova RG, Deguchi S, Tsujii KJ (2001) Stable colloidal dispersions of fullerenes in polar organic solvents. J Am Chem Soc 123:10460–10467. doi:10.1021/ja010202a

    Article  CAS  Google Scholar 

  5. Deguchi S, Mukai S (2006) Top-down preparation of dispersions of C60 nanoparticles in organic solvents. Chem Lett 35:396–397. doi:10.1246/cl.2006.396

    Article  CAS  Google Scholar 

  6. Deguchi S, Alargova RG, Tsujii K (2001) Stable dispersions of fullerenes, C60 and C70, in water. Preparation and Characterization Langmuir 17:6013–6017. doi:10.1021/la010651o

    CAS  Google Scholar 

  7. Beeby A, Eastoe J, Crooks ER (1996) Remarkable stability of C60•- in micelles. Chem Commun 901–902. doi:10.1039/CC996000090

  8. Guldi D (1997) Electron transfer studies in C-78 (C-2 nu'), C-76 (D-2), C-70 (D-5 h), and C-60 (I-h) surfactant aqueous solutions. J Phys Chem B 101:9600–9605. doi:10.1021/jp972284o

    Article  CAS  Google Scholar 

  9. Ala-Kleme T, M¨aki A, M¨aki R, Kopperoinen A, Heikkinen M, Haapakka K (2013) Micelle-encapsulated fullerenes in aqueous electrolytes. J Lumin 135:221–226. doi:10.1016/j.jlumin.2012.10.012

    Article  CAS  Google Scholar 

  10. Ikeda A (2013) Water-soluble fullerenes using solubilizing agents, and their applications. J Incl Phenom Macrocycl Chem 77:49–65. doi:10.1007/s10847-013-0319-9

    Article  CAS  Google Scholar 

  11. Tabata Y, Murakami Y, Ikada Y (1997) Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn J Cancer Res 88:1108–1116. doi:10.1111/j.1349-7006.1997.tb00336.x

    Article  CAS  Google Scholar 

  12. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366. doi:10.1021/es0603655

    Article  CAS  Google Scholar 

  13. Hamley IW (2004) Developments in Block Copolymer Science and Technology, New York

  14. Wang XS, Metanawin T, Zheng XY, Wang PY, Ali M, Vernon D (2008) Structure-defined C60/polymer colloids supramolecular nanocomposites in water. Langmuir 24:9230–9232. doi:10.1021/la801968x

    Article  CAS  Google Scholar 

  15. Metanawin Т, Tang T, Chen R, Vernon D, Wang X (2011) Cytotoxicity and photocytotoxicity of structure-defined water-soluble C60/micelle supramolecular nanoparticles. Nanotechnology 22:1–9. doi:10.1088/0957-4484/22/23/235604

    Article  Google Scholar 

  16. Laiho A, Ras Robin HA, Valkama S, Ruokolainen J, Osterbaska R, Ikkala O (2006) Control of self-assembly by charge-transfer complexation between C60 fullerene and electron donating units of block copolymers. Macromolecules 39:7648–7653. doi:10.1021/ma061165g

    Article  CAS  Google Scholar 

  17. Waller JH, Bucknall DG, Register RA, Beckham HW, Leisen J, Campbell K (2009) C60 fullerene inclusions in low-molecular-weight polystyrene–poly(dimethylsiloxane) diblock copolymers. Polymer 50:4199–4204. doi:10.1016/j.polymer.2009.06.060

    Article  CAS  Google Scholar 

  18. Kurmaz SV, Obraztsova NA, Perepelitsina EO, Anokhin DV, Shilov GV, Kabachkov EN, Torbov VI, Dremova NN (2014) Synthesis and characterization of C60-based composites of amphiphilic N-vinylpyrrolidone/triethylene glycol dimethacrylate copolymers. Polymer Composite 35:1362–1371. doi:10.1002/pc.22788

    Article  CAS  Google Scholar 

  19. Kurmaz SV, Obraztsova NA, Ivanchikhina AV (2014) Fullerene-containing macromolecular structures based on amphiphilic N-vinylpyrrolidone copolymers: preparation and characterization. High Energy Chemistry 48:42–48. doi:10.1134/S0018143914010081

    Article  CAS  Google Scholar 

  20. Kurmaz SV, Obraztsova NA, Perepelitsina EO, Shilov GV, Anokhin DV, Pechnikova EV (2015) New hybrid macromolecular structures of C60 fullerene-amphiphilic copolymers of N-vinylpyrrolidone and triethylene glycol dimethacrylate. Materials Today Communications 4:130–140. doi:10.1016/j.mtcomm.2015.05.004

    Article  CAS  Google Scholar 

  21. Kurmaz SV, Obraztsova NA (2015) New hybrid nanostructures of C60 fullerene based on amphiphilic copolymer of N-vinylpyrrolidone and (di)methacrylates. Mendeleev Commun 25:350–352. doi:10.1016/j.mencom.2015.09.011

    Article  CAS  Google Scholar 

  22. Kurmaz SV, Pyryaev AN (2010) Synthesis of N-vinyl-2-pyrrolidone-based branched copolymers via crosslinking free-radical copolymerization in the presence of a chain-transfer agent. Polym Sci Ser B 52:1–8. doi:10.1134/S156009041001001X

    Article  Google Scholar 

  23. Kuchuk VI, Shirokova IY, Golikova EV (2012) Physicochemical properties of water–alcohol mixtures of a homological series of lower aliphatic alcohols. Glas Phys Chem 38:460–465. doi:10.1134/S1087659612050057

    Article  CAS  Google Scholar 

  24. Kurmaz SV, Pyryaev AN (2012) Synthesis and properties of fullerene-containing N-vinylpyrrolidone copolymers. Russ J Gen Chem 82:1705–1714. doi:10.1134/S1070363212100118

    Article  CAS  Google Scholar 

  25. Klimova TP, Babushkina TA, Khvostova VY (2005) 1H NMR spectra of water contained in solutions of poly(N-vinylpyrrolidone) and its modification products in CDCl3. Russ Chem Bull, Int Ed 54:2452–2455. doi:10.1007/s11172-006-0136-z

    Article  CAS  Google Scholar 

  26. Urinov E, Abdullaev FT, Mirzaev UM (1989) Molecular and conformational parameters of the copolymer of vinylpyrrolidone with crotonic aldehyde and its complexes with 3d-transition metals in dilute solution. Polymer Science USSR 31:660–666. doi:10.1016/0032-3950(89)90248-7

    Article  Google Scholar 

  27. Van Leemput R, Stein R (1964) Experimental data on dilute polymer solutions. Hydrodynamic properties and statistical coil dimensions of poly(n-butyl methacrylate). Part II. J Polym Sci A 2:4039–4045. doi:10.1002/pol.1964.100020920

    Google Scholar 

  28. Vinogradova LV, Melenevskaya EY, Khachaturov AS, Kever EE, Litvininova LS, Novokreshchenova AV, Sushko MA, Klenin SI, Zgonnik VN (1998) Water-soluble complexes of C60 fulleren with poly(N-vinylpyrrolidone). Polym Sci Ser A 40:1152–1159

    Google Scholar 

  29. Li MJ, Chen Q (2003) Interactions between fullerene(C60) and poly(ethylene oxide) in their complexes as revealed by high-resolution solid-state 13C NMR spectroscopy. Polymer 44:2793–2798. doi:10.1016/S0032-3861(03)00180-0

    Article  CAS  Google Scholar 

  30. Kazaoui S, Ross R, Minami N (1994) In situ photoconductivity behavior of C60 thin films: wavelength, temperature, oxygen effect. Solid State Commun 90:623–628. doi:10.1016/0038-1098(94)90534-7

    Article  CAS  Google Scholar 

  31. Gránásy L, Pusztai1, T, Tegze G, Warren, JA, Douglas, JF (2005) Growth and form of spherulites. Phys Rev E 72:1–15. doi:10.1103/PhysRevE.72.011605

Download references

Acknowledgments

This work was supported by RFBR, Grant Number 16-33-01125. The authors thank A. Grischuk (IPSP RAS) for the measurement of the dynamic viscosity of the copolymer in the isopropyl alcohol-water mixtures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana V. Kurmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmaz, S.V., Obraztsova, N.A. & Kabachkov, E.N. The features of the formation of the hybrid nanostructures of C60 fullerene and amphiphilic copolymer of N-vinylpyrrolidone with (di)methacrylates in isopropyl alcohol and its mixtures with water. Colloid Polym Sci 294, 2087–2097 (2016). https://doi.org/10.1007/s00396-016-3959-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3959-7

Keywords

Navigation