Skip to main content
Log in

Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Temperature-responsive nanoparticles of cross-linked poly-N-vinylcaprolactam (microgels), stabilized by high molecular weight emulsifier—monohelic hydrophobically modified polyacrylamide—have been synthesized in oil-in-water emulsion. Nanodispersions of spherical particles of about 100 nm in size rather narrowly distributed as defined by dynamic light scattering and TEM and AFM microscopy were stable in time. Electrokinetic potential, which depended on pH, revealed negative charges on nanoparticle surface arisen from hydrolysis of amide groups of polymer-stabilizer. Due to electrosterical stabilization caused by the adsorption of weakly charged polymeric stabilizer, the prepared dispersions exhibited higher stability against an action of electrolytes as compared with sols stabilized with low molecular weight surfactants. The prepared microgels exhibited high stability at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf Sci 85:1–33

    Article  CAS  Google Scholar 

  2. Tauer K, Gau D, Schulze S, Volkel A, Dimova R (2009) Thermal property changes of poly(N-isopropylacrylamide)microgel particles and block copolymers. Colloid Polym Sci 287:299–312. doi:10.1007/s00396-008-1984-x

    Article  CAS  Google Scholar 

  3. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  4. Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429

    Article  CAS  Google Scholar 

  5. Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44:7686–7708

    Article  CAS  Google Scholar 

  6. Wang Y, Nie J, Chang B, Sun Y, Yang W (2013) Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromolecules 14:3034–3046. doi:10.1021/bm401131w

    Article  CAS  Google Scholar 

  7. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064. doi:10.1016/j.biomaterials.2004.09.008

    Article  CAS  Google Scholar 

  8. Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856. doi:10.1039/c2py00485b

    Article  CAS  Google Scholar 

  9. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62

    Article  CAS  Google Scholar 

  10. Imaz A, Miranda JI, Ramos J, Forcada J (2008) Evidences of a hydrolysis process in the synthesis of Nvinylcaprolactam-based microgels. Eur Polym J 44:4002–4011. doi:10.1016/j.eurpolymj.2008.09.027

    Article  CAS  Google Scholar 

  11. Gao Y, Au-Yeng SCF, Wu C (1999) Interaction between surfactant and poly(N-vinylcaprolactam) microgels. Macromolecules 32:3674. doi:10.1021/ma981756+

    Article  CAS  Google Scholar 

  12. Boyko V, Richter S, Pich A, Arndt KF (2003) Poly(N-vinylcaprolactam) microgels. Polymeric stabilization with poly(vinyl alcohol). Colloid Polym Sci 282:127–132. doi:10.1007/s00396-003-0946-6

    Article  CAS  Google Scholar 

  13. Boyko V, Richter S, Burchard W, Arndt KF (2007) Chain dynamics in microgels: poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) microgels as examples. Langmuir 23:776–784

    Article  CAS  Google Scholar 

  14. Boyko V, Pich A, Lu Y, Richter S, Arndt KF, Adler HJ (2003) Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1—synthesis and characterization. Polymer 44:7821–7827. doi:10.1016/j.polymer.2003.09.037

    Article  CAS  Google Scholar 

  15. Häntzschel N, Zhang F, Eckert F, Pich A, Winnik MA (2007) Poly(N-vinylcaprolactam-co-glycidyl methacrylate) aqueous microgels labeled with fluorescent LaF3:Eu nanoparticles. Langmuir 23:10793–10800

    Article  Google Scholar 

  16. Kirsh YE (1998) Water soluble poly-N-vinylamides: synthesis and physicochemical properties. Wiley, Chichester

    Google Scholar 

  17. Laukkanen A, Wiedmer SK, Varjo S, Riekkola ML, Tenhu H (2002) Stability and thermosensitive properties of various poly-N-vinylcaprolactam microgels. Colloid Polym Sci 280:65–70. doi:10.1021/la050036a

    Article  CAS  Google Scholar 

  18. Galant C, Kjniksen AL, Knudsen KD, Helgesen G, Lund R, Laukkanen A, Tenhu H, Nystrom B (2005) Physical properties of aqueous solutions of a thermo-responsive neutral copolymer and an anionic surfactant: turbidity and small-angle neutron scattering studies. Langmuir 21:8010–8018. doi:10.1021/la050036a

    Article  CAS  Google Scholar 

  19. Shatalov GV, Verezhnikov VN, Plaksitskaya TV, Kuznetsov VA, Poyarkova TN, Yan’shina AV (2006) Synthesis of N,N-dimethylaminoethyl methacrylate copolymers with N-vinyl caprolactam and their complexing and flocculating behavior. Polym Sci Ser A 48:563–568. doi:10.1134/S0965545X06060022

    Article  Google Scholar 

  20. Peng S, Wu C (2001) Surfactant effect on pH and temperature sensitivities of poly(N-vinylcaprolactam-co-sodium acrylate) microgels. Macromolecules 34:568–571. doi:10.1021/ma0009909

    Article  CAS  Google Scholar 

  21. Shatalov G, Churilina E, Kuznetsov V, Verezhnikov V (2007) Copolymerization of N-vinylcaprolactam with N-vinyl(benz)imidazoles and the properties of aqueous solutions of the copolymers. Polym Sci Ser B 49:57–60. doi:10.1134/S1560090407030013

    Article  Google Scholar 

  22. Kratz K, Lapp A, Eimer W, Hellweg T (2002) Volume transition and structure of triethyleneglycol dimethacrylate, ethylenglykol dimethacrylate, and N, N′-methylene bis-acrylamide cross-linked poly(N-isopropyl acrylamide) microgels: a small angle neutron and dynamic light scattering study. Colloids Surface A 197:55–67. doi:10.1016/S0927-7757(01)00821-4

    Article  CAS  Google Scholar 

  23. Hazot P, Delair T, Pichot C, Chapel JP, Elaissari A (2003) Poly(N-ethylmethacrylamide) thermally-sensitive microgel latexes: effect of the nature of the crosslinker on the polymerization kinetics and physicochemical properties. C R Chim 6:1417–1424. doi:10.1016/j.crci.2003.09.003

    Article  CAS  Google Scholar 

  24. Elmas B, Tuncel M, Senel S, Patir S, Tuncel A (2007) Hydroxyl functionalized thermosensitive microgels with quadratic crosslinking density distribution. J Colloid Interface Sci 313:174–183. doi:10.1016/j.jcis.2007.04.052

    Article  CAS  Google Scholar 

  25. Blagodatskikh I, Tikhonov V, Ivanova E, Landfester K, Khokhlov A (2006) New approach to the synthesis of polyacrylamide in miniemulsified systems. Macromol Rapid Commun 27:1900–1905. doi:10.1002/marc.200600520

    Article  CAS  Google Scholar 

  26. Chi W (1999) Column handbook for size exclusion chromatography. Ac Press, New York

    Google Scholar 

  27. ALV-Correlator Software V.3.0. http://www.alvgmbh.de/Download_Area/download_area.html

  28. Gupta KC, Behari K (1986) Cerium (IV)-2-chloroethanol redox-pair initiated polymerization of acrylamide in aqueous medium. J Polym Sci A1(24):767–775

    Article  Google Scholar 

  29. Fernandez MD, Guzman GM (1989) Aqueous polymerization of methyl methacrylate initiated by the redox system Ce(IV)—D-glucose. I: general features and kinetics. Brit Polym J 21:413–419. doi:10.1002/pi.4980210510

    Article  CAS  Google Scholar 

  30. Hsu WC, Kuo JF, Chen CY (1992) Aqueous polymerization of acrylamide initiated by cerium(IV)–ethylenediamine tetraacetic acid redox system. J Polym Sci A1(30):2459–2466. doi:10.1002/pola.1992.080301120

    Article  Google Scholar 

  31. Behari K, Argawal U, Das R (1993) Cerium(IV)-sorbose-initiated polymerization of acrylamide and methacrylamide. Polymer 34:4557–4561. doi:10.1016/0032-3861(93)90164-6

    Article  CAS  Google Scholar 

  32. Hsu WC, Chen CY, Kuo JF, Wu EM (1994) Aqueous polymerization of acrylamide initiated by cerium(IV)-nitrilotriacetic acid redox initiator. Polymer 35:849–856. doi:10.1016/0032-3861(94)90885-0

    Article  CAS  Google Scholar 

  33. Sarac AS (1999) Redox polymerization. Prog Polym Sci 24:1149–1204. doi:10.1016/S0079-6700(99)00026-X

    Article  CAS  Google Scholar 

  34. Mahadevaiah DT, Sangappa KBA (2008) Polymerization of acrylonitrile initiated by Ce(IV)‐sucrose redox system: a kinetic study. J Appl Polym Sci 108:3760–3768. doi:10.1002/app.27989

    Article  CAS  Google Scholar 

  35. Kobitskaya E (2008) Synthesis of hydrophobically modified polyacrylamide in inverse miniemulsion. Ulm University, Dissertation, http://vts.uni-ulm.de/docs/2008/6558/vts_6558_8942.pdf

    Google Scholar 

  36. Burchard W (1999) Solution properties of branched macromolecules. Adv Polym Sci 143:113–194

    Article  CAS  Google Scholar 

  37. Kalyanasundaram K, Thomas GK (1977) Environmental effects on vibronic band intensitiesin pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  38. Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. Wiley, Chichester

    Book  Google Scholar 

  39. Schmidt S, Hellweg T, von Klitzing R (2008) Packing density control in p(NIPAM-co-AAc) microgel monolayers: effect of surface charge, pH, and preparation technique. Langmuir 24:12595–12602. doi:10.1021/la801770n

    Article  CAS  Google Scholar 

  40. Neiman RE (1980) Ocherki kolloidnoi khimii sinteticheskikh lateksov (Essays of colloid chemistry of synthetic latices). Voronezhskii Gosudarstvennyi Universitet, Voronezh

    Google Scholar 

  41. Yibing G, Steve CF, Au-Yeung CW (1999) Interaction between surfactant and poly(N-vinylcaprolactam) microgels. Macromolecules 32:3674–3677. doi:10.1021/ma981756+

    Article  Google Scholar 

  42. Imaz A, Forcada J (2008) N-vinylcaprolactam-based microgels: synthesis and characterization. J Polym Sci A1(46):2510–2524. doi:10.1002/pola.22583

    Article  Google Scholar 

  43. Sun Sh WP (2011) Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolactam ) in water. J Phys Chem B 115:11609–11618. doi:10.1021/jp2071056

    Article  Google Scholar 

  44. Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico Chemica URSS 14:633–662

    Google Scholar 

  45. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsov.

Ethics declarations

Funding

This study was funded by the Ministry of Education and Science of the Russian Federation (grant number 1296).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A., Kushchev, P.O., Blagodatskikh, I.V. et al. Aqueous dispersions of cross-linked poly-N-vinylcaprolactam stabilized with hydrophobically modified polyacrylamide: synthesis, colloidal stability, and thermosensitive properties. Colloid Polym Sci 294, 889–899 (2016). https://doi.org/10.1007/s00396-016-3843-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3843-5

Keywords

Navigation