Skip to main content
Log in

Replacing the solid needle by a liquid one when measuring static and advancing contact angles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In general, the optical determination of static and advancing contact angle is made on drops applied or extended, respectively, onto a substrate through the use of thin solid needles. Although this method is used extensively, this way of dosing can be time consuming, cumbersome and if not performed meticulously can lead to erroneous results. Herein, we present an alternative way of applying drops onto substrates using a liquid jet produced by a liquid pressure dosing system acting as a “liquid needle”. We performed a comparative static contact angle study on 14 different surfaces with two different liquids (water and diiodomethane) utilizing two different ways of dosing: the conventional solid and a novel liquid needle-based technique. We found, for all but one sample, that the obtained results on μl size drops were comparable within the experimental error bars provided the liquid needle is thin enough. Observed differences are explained by the special characteristics of either way of dosing. In addition, we demonstrate how the liquid pressure-based dosing system facilitates high-speed optical advancing contact angle measurement by expanding a drop from 0.1 to 22 μl within less than 1.2 s but yet providing constant contact angle versus drop base diameter curves. The obtained results were compared with data from tensiometric dynamic Wilhelmy contact angle measurements. These data, in conjunction with sequences of live images of the dosing process of the liquid pressure dosing system, illustrate how this system can replace the solid needle by a liquid needle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Young T (1805) Phil Trans R Soc Lond:65–87

  2. Cheng P, Li D, Boruvka L, Rotenberg Y, Neumann A (1990) Colloids Surf 43(2):151. doi:10.1016/0166-6622(90)80286-D

    Article  CAS  Google Scholar 

  3. Eral H, ’t Mannetje D, Oh J (2013) Collied Polym Sci 291(2):247. doi:10.1007/s00396-012-2796-6

    Article  CAS  Google Scholar 

  4. Kwon HM, Paxson AT, Varanasi KK, Patankar NA (2011) Phys Rev Lett 106:036102. doi:10.1103/PhysRevLett.106.036102

    Article  Google Scholar 

  5. Waghmare PR, Das S, Mitra SK (2013) Soft Matter 9:7437. doi:10.1039/C3SM50981H

    Article  CAS  Google Scholar 

  6. Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Science 318(5856):1618. doi:10.1126/science.1148326

    Article  CAS  Google Scholar 

  7. Liu T, Kim CJ (2014) Science 346(6213):1096. doi:10.1126/science.1254787

    Article  CAS  Google Scholar 

  8. Taylor M, Urquhart AJ, Zelzer M, Davies MC, Alexander MR (2007) Langmuir 23(13):6875. doi:10.1021/la070100j

    Article  CAS  Google Scholar 

  9. Deng X, Mammen L, Butt HJ, Vollmer D (2012) Science 335(6064):67. doi:10.1126/science.1207115

    Article  CAS  Google Scholar 

  10. Rioboo R, Marengo M, Tropea C (2002) Exp Fluids 33(1):112. doi:10.1007/s00348-002-0431-x

    Article  Google Scholar 

  11. Vadillo D, Soucemarianadin A, Delattre C, Roux DCD (2009) Phys Fluids 21(122002):122002

    Article  Google Scholar 

  12. Ukiwe C, Kwok DY (2005) Langmuir 21(2):666. doi:10.1021/la0481288

    Article  CAS  Google Scholar 

  13. Pasandideh-Fard M, Qiao Y, Chandra S, Mostaghimi J (1996) Phys Fluids 8(3):650

    Article  CAS  Google Scholar 

  14. Butt HJ, Roisman IV, Brinkmann M, Papadopoulos P, Vollmer D, Semprebon C (2014) Current Opinion in Colloid and Interface Science 19(4):343. doi:10.1016/j.cocis.2014.04.009

    Article  CAS  Google Scholar 

  15. Weser F, Scheithauer C, Friedrich B (2015) Contact angle measurement apparatus. https://www.google.de/patents/EP2899528A1?cl=en. EP Patent App. EP20,140,152,563

  16. Collet P, De Coninck J, Drouiche K, Dunlop F (2013) Collied Polym Sci 291(2):291. doi:10.1007/s00396-012-2839-z

    Article  CAS  Google Scholar 

  17. Bormashenko E (2013) Collied Polym Sci 291(2):339. doi:10.1007/s00396-012-2778-8

    Article  CAS  Google Scholar 

  18. Tavana H, Yang G, Yip CM, Appelhans D, Zschoche S, Grundke K, Hair ML, Neumann AW (2006) Langmuir 22(2):628. doi:10.1021/la051715o

    Article  CAS  Google Scholar 

  19. Ashurst W, Yau C, Carraro C, Maboudian R, Dugger M (2001) J Microelectromech Syst 10 (1):41. doi:10.1109/84.911090

    Article  CAS  Google Scholar 

  20. Wang A, Tang H, Cao T, Salley SO, Ng KS (2005) J Colloid Interface Sci 291(2):438. doi:10.1016/j.jcis.2005.05.008

    Article  CAS  Google Scholar 

  21. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Rev Mod Phys 81:739. doi:10.1103/RevModPhys.81.739

    Article  CAS  Google Scholar 

  22. Blake TD (2006) J Colloid Interface Sci 299(1):1. doi:10.1016/j.jcis.2006.03.051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Igor Kogut and Prashant R. Waghmare for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Willers.

Ethics declarations

Disclosure of potential conflicts of interest

The authors are employed by KRÜSS GmbH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Sanedrin, R., Frese, D. et al. Replacing the solid needle by a liquid one when measuring static and advancing contact angles. Colloid Polym Sci 294, 657–665 (2016). https://doi.org/10.1007/s00396-015-3823-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3823-1

Keywords

Navigation