Skip to main content

Advertisement

Log in

Synthesis and characterization of multi-sensitive microgel-based polyampholyte hydrogels with high mechanical strength

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, multi-sensitive hydrogels with high mechanical strength were successfully prepared by in situ free-radical polymerization of acrylamide, acrylic acid and acryloyloxyethyl trimethyl ammonium chloride monomers in the presence of microgels in aqueous media. Microgels with amine groups on the surface were used as polyfunctional initiating and cross-linking centers to fabricate a network. The microgel-based hydrogels synthesized did not fracture upon loading up to 30 MPa and a strain above 99 % when the water content was about 84 wt%. As for the swelling behaviors of the microgel-based hydrogels, they were susceptible to pH and salt concentration. Meanwhile, deswelling tests indicated that the microgel-based hydrogels had thermo-sensitive properties and under high temperature exhibited a faster shrinking rate, which could be attributed to the solvent channels caused by the shrinkage of microgels due to their thermo-sensitive core. And microgel-based hydrogels with various deswelling rates can be determined by regulating the content and species of microgel. Furthermore, the low extensibility of microgel-based polyampholyte hydrogels could be improved by creating a hybrid network with microgels and a small amount of N,N’-methylenebisacrylamide served as the chemical cross-linkers. The hybrid hydrogels possessed superior compressive strength and simultaneously showed abnormal elongation of up to 1000 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Baker JP, Stephens DR, Blanch HW, Prausnitz JM (1992) Macromolecules 25:1955

    Article  CAS  Google Scholar 

  2. English AE, Mafe S, Manzanares JA, Yu XH, Grosberg AY, Tanaka T (1996) J Chem Phys 104:8713

    Article  CAS  Google Scholar 

  3. Nisato G, Munch JP, Candau SJ (1999) Langmuir 15:4236

    Article  CAS  Google Scholar 

  4. Chen LY, Tian ZG, Du YM (2004) Biomaterials 25:3725

    Article  CAS  Google Scholar 

  5. Zhao Y, Su HJ, Fang L, Tan TW (2005) Polymer 46:5368

    Article  CAS  Google Scholar 

  6. Wen S, Stevenson WTK (1993) Colloid Polym Sci 271:38

    Article  CAS  Google Scholar 

  7. Chang C, He M, Zhou J, Zhang L (2011) Macromolecules 44:1642

    Article  CAS  Google Scholar 

  8. Katayama S, Myoga A, Akahori Y (1992) J Phys Chem 96:4698

    Article  CAS  Google Scholar 

  9. Xu K, Wang J, Chen Q, Yue Y, Zhang W, Wang P (2008) J Colloid Interface Sci 321:272

    Article  CAS  Google Scholar 

  10. Armentrout RS, McCormick CL (2000) Macromolecules 33:419

    Article  CAS  Google Scholar 

  11. Skouri M, Munch JP, Candau SJ, Neyret S, Candau F (1994) Macromolecules 27:69

    Article  CAS  Google Scholar 

  12. Kono H, Oeda I, Nakamura T (2013) React Funct Polym 73:97

    Article  CAS  Google Scholar 

  13. Sanjuan S, Tran Y (2008) Macromolecules 41:8721

    Article  CAS  Google Scholar 

  14. Sun Y-L, Dong W-F, Yang R-Z, Meng X, Zhang L, Chen Q-D, Sun H-B (2012) Angew Chem Int Ed 51:1558

    Article  CAS  Google Scholar 

  15. Khare AR, Peppas NA (1995) Biomaterials 16:559

    Article  CAS  Google Scholar 

  16. Stavrouli N, Aubry T, Tsitsilianis C (2008) Polymer 49:1249

    Article  CAS  Google Scholar 

  17. Dalaran M, Emik S, Guclu G, Iyim TB, Ozgumus S (2011) Desalination 279:170

    Article  CAS  Google Scholar 

  18. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Prog Polym Sci 35:403

    Article  CAS  Google Scholar 

  19. Kerin AJ, Wisnom MR, Adams MA, Mech PI (1998) Eng Hist Rev 212:273

    CAS  Google Scholar 

  20. Zhang J, Peppas NA (1999) Macromolecules 33:102

    Article  Google Scholar 

  21. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155

    Article  CAS  Google Scholar 

  22. Fleury G, Schlatter G, Brochon C, Travelet C, Lapp A, Lindner P, Hadziioannou G (2007) Macromolecules 40:535

    Article  CAS  Google Scholar 

  23. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Macromolecules 36:5732

    Article  CAS  Google Scholar 

  24. Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Macromolecules 43:6193

    Article  CAS  Google Scholar 

  25. Lutz PJ (2001) Macromol Symp 164:277

    Article  CAS  Google Scholar 

  26. Fang J, Mehlich A, Koga N, Huang J, Koga R, Gao X, Hu C, Jin C, Rief M, Kast J, Baker D, Li H (2013) Nat Commun 4:2974

    Google Scholar 

  27. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Nature 374:240

    Article  CAS  Google Scholar 

  28. Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Polymer 48:195

    Article  CAS  Google Scholar 

  29. Yan H, Fujiwara H, Sasaki K, Tsujii K (2005) Angew Chemie Int Ed 117:1987

    Article  Google Scholar 

  30. Yan Q, Hoffman AS (1995) Polymer 36:887

    Article  CAS  Google Scholar 

  31. Cho EC, Kim JW, Fernández-Nieves A, Weitz DA (2007) Nano Lett 8:168

    Article  Google Scholar 

  32. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Nat Mater 12:932

    Article  CAS  Google Scholar 

  33. Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) Adv Mater 19:1622

    Article  CAS  Google Scholar 

  34. Tan Y, Xu K, Wang PX, Li WB, Sun SM, Dong LS (2010) Soft Matter 6:1467

    Article  CAS  Google Scholar 

  35. Li P, Xu K, Tan Y, Lu C, Li Y, Wang P (2013) Polymer 54:5830

    Article  CAS  Google Scholar 

  36. Chen Q, Xu K, Zhang WD, Song CL, Wang PX (2009) Colloid Polym Sci 287:1339

    Article  CAS  Google Scholar 

  37. Hu J, Kurokawa T, Nakajima T, Sun TL, Suekama T, Wu ZL, Liang SM, Gong JP (2012) Macromolecules 45:9445

    Article  CAS  Google Scholar 

  38. Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Macromolecules 45:5218

    Article  CAS  Google Scholar 

  39. Shen JF, Yan B, Li T, Long Y, Li N, Ye MX (2012) Soft Matter 8:1831

    Article  CAS  Google Scholar 

  40. Wang Q, Hou RX, Cheng YJ, Fu J (2012) Soft Matter 8:6048

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant no. 51321062 and 51103150) and Jilin Province Science and Technology Development Project Foundation (grant no. 20140204083GX, 20140204064SF and 20130204002GX) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Xu or Pixin Wang.

Additional information

We hereby confirm that this manuscript is our original work and has not been published nor has it been submitted simultaneously elsewhere. Also the work described has not been used for any prior oral presentation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1098 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, P., Xu, K. et al. Synthesis and characterization of multi-sensitive microgel-based polyampholyte hydrogels with high mechanical strength. Colloid Polym Sci 294, 367–380 (2016). https://doi.org/10.1007/s00396-015-3792-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3792-4

Keywords

Navigation