Skip to main content
Log in

Surface and self-organization of sodium salt of 2-decyl pyridine-5-boronic acid and sodium salt of 2-oxydecyl pyridine-5-boronic acid at two different pHs

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This study evaluates the effect of pH and oxygen atom of the hydrophobic chain on the self-assembly property and morphology of the two synthesized pyridyl boronic acid-based amphiphiles in the presence of carbohydrates. Tensiometry measurements confirmed the formation of aggregates in solutions, and all the studied amphiphiles are surface active. Steady-state fluorescence studies established that the microenvironments of the self-assemblies are nonpolar and rigid. DLS measurements suggest the presence of single type of morphology for SDPB at both the pHs. Reversely, the bimodal intensity average size distribution of SODPB at pH 9 indicates the presence of two types of aggregates, and monomodal distribution at pH 13 implies existence of one type of aggregates in solution. TEM micrographs show the presence of vesicles for SDPB at solutions of two different pHs, whereas TEM pictures of SODPB at pH 9 revealed existence of both of complex micelles and vesicles and at pH 13 formation of crystalline structures. The actual arrangement of the hydrocarbon chains in the bilayers has been investigated by XRD studies. The surface activity and self-assembly property of the amphiphiles could be used in surfactant and pharmaceutical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W (2011) Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 44:1039–1049

    Article  CAS  Google Scholar 

  2. Qiao Y, Wang YJ, Yang ZY, Lin YY, Huang JB (2011) Self-templating of metal-driven supramolecular self-assembly: a general approach toward 1D inorganic nanotubes. Chem Mater 23:1182–1187

    Article  CAS  Google Scholar 

  3. Wang DX, Wang QQ, Han YC, Wang YL, Huang ZT, Wang MX (2010) Versatile anion-π interactions between halides and a conformationally rigid bis(tetraoxacalix[2]arene[2]triazine) cage and their directing effect on molecular assembly. Chem Eur J 16:13053–13057

    Article  CAS  Google Scholar 

  4. Jiang LX, Yan Y, Huang JB, Yu CF, Jin CG, Deng ML, Wang YL (2010) Selectivity and stoichiometry boosting of β-cyclodextrin in cationic/anionic surfactant systems: when host-guest equilibrium meets biased aggregation equilibrium. J Phys Chem B 114:2165–2174

    Article  CAS  Google Scholar 

  5. Evans DF, Wennerstrom H (1999) The colloidal domain, where physics, chemistry, biology, and technology meet, 2nd edn. John Wiley, New York

    Google Scholar 

  6. Rosoff M (1996) Marcel Dekker Inc., Surfactant Science Series 62. Vesicles, New York

  7. Lipowsky R, Sackmann R (1995) Handbook of biological physics. Elsevier, Amsterdam

    Google Scholar 

  8. Ito Y, Ogawa T (1994) A novel approach to the stereoselective synthesis of β mannosides. Angew Chem Int Ed Engl 33:1765–1767

    Article  Google Scholar 

  9. Yaacob I, Nunes AC, Bose A (1995) Magnetic nanoparticles produced in spontaneous cationic-anionic vesicles: room temperature synthesis and characterization. J Colloid Interf Sci 171:73–84

    Article  CAS  Google Scholar 

  10. Fendler J (1983) Membrane mimetic chemistry. Wiley, New York

    Google Scholar 

  11. Ostro MJ (1987) Liposomes: from biophysics to therapeutics. Dekker: New York

  12. Israelachvili J (1991) Intermolecular and surface forces. Academic: London

  13. Lee JH, Danino D, Raghavan SR (2009) Polymerizable vesicles based on a single-tailed fatty acid surfactant: a simple route to robust nanocontainers. Langmuir 25:1566–1571

    Article  CAS  Google Scholar 

  14. Popov M, Linder C, Deckelbaum RJ, Grinberg S, Hansen IH, Shaubi E, Waner T, Heldman E (2010) Cationic vesicles from novel bolaamphiphilic compounds. J Liposome Res 20:147–159

    Article  CAS  Google Scholar 

  15. Du N, Song R, Zhu X, Hou W, Li H, Zhang R (2014) Vesicles composed of one simple single-tailed surfactant. Chem Commun 50:10573–10576

    Article  CAS  Google Scholar 

  16. Dhasaiyan P, Pandey PR, Visaveliya N, Roy S, Prasad BLV (2014) Vesicle structures from bolaamphiphilic biosurfactants: experimental and molecular dynamics simulation studies on the effect of unsaturation on sophorolipid self-assemblies. Chem Eur J 20:6246–6250

    Article  CAS  Google Scholar 

  17. Wang G, Zhang D, Du Z, Li P (2014) Spontaneous vesicle formation from trisiloxane-tailed gemini surfactant. J Ind Eng Chem 20:1247–1250

    Article  CAS  Google Scholar 

  18. Singh S, Bhadani A, Kataria H, Kaur G, Kamboj R (2009) Synthesis of glycerol-based pyridinium surfactants and appraisal of their properties. Ind Eng Chem Res 48:1673–1677

    Article  CAS  Google Scholar 

  19. Zhou L, Chen H, Jiang X, Lu F, Zhou Y, Yin W, Ji X (2009) Modification of montmorillonite surfaces using a novel class of cationic gemini surfactants. J Colloid Interface Sci 332:16–21

    Article  CAS  Google Scholar 

  20. Goncalves LM, Kobayakawa TG, Zanette D, Chaimovich H, Cuccovia IM (2009) Effects of micelles and vesicles on the oximolysis of p-nitrophenyl diphenyl phosphate: a model system for surfactant-based skin-defensive formulations against organophosphates. J Pharm Sci 98:1040–1052

    Article  CAS  Google Scholar 

  21. Madaan P, Tyagi VK (2008) Quaternary pyridinium salts: a review. J Oleo Sci 57:197–215

    Article  CAS  Google Scholar 

  22. Motoshima K, Hiwasa Y, Yoshikawa M, Fujimoto K, Tai A, Kakuta H, Sasaki K (2007) Antimalarial cation-dimers synthesized in two steps from an inexpensive starting material, isonicotinic acid. ChemMedChem 2:1527–1532

    Article  CAS  Google Scholar 

  23. Hall DG (2005) Boronic acids: preparations and applications in organic synthesis and medicine. Wiley-VCH, Weinheim

    Book  Google Scholar 

  24. Savsunenko O, Matondo H, Franceschi-Messant S, Perez E, Popov AF, Rico-Lattes I, Lattes A, Karpichev Y (2013) Functionalized vesicles based on amphiphilic boronic acids: a system for recognizing biologically important polyols. Langmuir 29:3207–3213

    Article  CAS  Google Scholar 

  25. Maiti M, Roy A, Roy S (2013) Effect of pH and oxygen atom of the hydrophobic chain on the self-assembly property and morphology of the pyridyl boronic acid based amphiphiles. Langmuir 29:13329–13338

    Article  CAS  Google Scholar 

  26. Rosen MJ (2004) Surfactants and interfacial phenomena, 4th edn. Wiley Interscience, New York

    Book  Google Scholar 

  27. Huang JB, Mao M, Zhu BY (1999) The surface physico-chemical properties of surfactants in ethanol-water mixtures. Colloids Surf A 155:339–348

    Article  CAS  Google Scholar 

  28. Ono D, Masuyama A, Nakatsuji Y, Okahara M, Yamamara S, Takeda T (1993) Preparation, surface-active properties and acid decomposition profiles of a new “soap” bearing a 1, 3-dioxolane ring. J Am Oil Chem Soc 70:29–36

    Article  CAS  Google Scholar 

  29. Evans DF, Wennerstorm H (1994) The colloidal domain: where physics, chemistry, biology and technology meets; VCH.New York

  30. Rosen MJ, Cohen AW, Dahanayake M, Hua XY (1982) Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly (ethenoxyethanol) s, C12H25 (OC2H4) xOH, in aqueous solution. J Phys Chem 86:541–545

    Article  CAS  Google Scholar 

  31. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  32. Edward JT (1970) Molecular volumes and the stokes-einstein equation. J Chem Educ 47:261–270

    Article  CAS  Google Scholar 

  33. Israelachvilli JN (1994) Intermolecular and surface forces, 4th edn. Academic Press, London

    Google Scholar 

  34. Wang X, Wang J, Wang Y, Yan H (2004) Salt effect on the complex formation between cationic gemini surfactant and anionic polyelectrolyte in aqueous solution. Langmuir 20:9014–9018

    Article  CAS  Google Scholar 

  35. Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99:2039–2044

    Article  CAS  Google Scholar 

  36. Shinitzky M, Yuli I (1982) Lipid fluidity at the submacroscopic level: determination by fluorescence polarization. Chem Phys Lipids 30:261–282

    Article  CAS  Google Scholar 

  37. Angayarkanny S, Vijay R, Baskar G, Mandal AB (2012) Formation of self-aggregated structures of different types in water of chiral polymerizable amphiphiles from L-tyrosine and L-phenylalanine. Langmuir 28:9378–9386

    Article  CAS  Google Scholar 

  38. Shinitzky M, Barenholz Y (1974) Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem 249:2652–2657

    CAS  Google Scholar 

  39. Ghosh A, Dey J (2008) Effect of hydrogen bonding on the physicochemical properties and bilayer self-assembly formation of N-(2-hydroxydodecyl)-L-alanine in aqueous solution. Langmuir 24:6018–6026

    Article  CAS  Google Scholar 

  40. Singh M, Trivedi MK, Bellare J (1999) Pore size tailorability in γ Al2O3 membranes using surfactant micelles as templates. J Mater Sci 34:5315–5323

    Article  CAS  Google Scholar 

  41. Shinitzky M, Dianoux AC, Itler C, Weber G (1971) Microviscosity and order in the hydrocarbon region of micelles and membranes determined with fluorescent probes I synthetic micelles. Biochemistry 10:2106–2113

    Article  CAS  Google Scholar 

  42. Hassan PA, Raghavan SR, Kaler EW (2002) Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir 18:2543–2548

    Article  CAS  Google Scholar 

  43. Misra PK, Mishra BK, Behera GB (1991) Micellization of ionic surfactants in tetrahydrofuran-water and acetonitrile-water mixed-solvent systems. Colloids Surf 57:1–10

    Article  CAS  Google Scholar 

  44. Dong J, Wang Y, Zhang J, Zhan X, Zhu S, Yangand H, Wang G (2013) Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter 9:370–373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Council of Scientific and Industrial Research (02(0195)/14/EMR-II). We would like to acknowledge University Scientific Instrumentation Centre (USIC), Vidyasagar University and Indian Institute of Technology, Kharagpur for providing instrumental facilities. MM thanks CSIR (09/599(0044)/2011-EMR-I), and AR thanks UGC (F.17-130/98(SA-I)) for research fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumita Roy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

LC-Mass and 1H-NMR spectra of all synthesized amphiphiles, materials and methods, XRD spectra. (DOC 1140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, M., Roy, A. & Roy, S. Surface and self-organization of sodium salt of 2-decyl pyridine-5-boronic acid and sodium salt of 2-oxydecyl pyridine-5-boronic acid at two different pHs. Colloid Polym Sci 294, 171–179 (2016). https://doi.org/10.1007/s00396-015-3760-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3760-z

Keywords

Navigation