Skip to main content
Log in

Synthesis and solution property of acrylamide-sulfobetaine copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Sulfobetaine 3-[N,N-dimethyl-N-(2-methacryloxylethyl)ammonio]-propane sulfonate (DMAPS) was used to copolymerize with acrylamide (AM) to prepare salt-sensitive copolymers. The optimal reaction conditions, such as initiator concentration, temperature, and reaction time, to achieve the largest weight averaged molecular weight (M w) and the lowest polydispersity index (PDI) were studied. The reactivity ratios of AM and DMAPS (r 1, r 2) were calculated to be (0.45, 0.84) by the Fineman-Ross method, and (0.47, 0.91) by the Kelen-Tüdös method. The Q-e values of DMAPS were calculated to be (0.30, −0.38). DMAPS was found to be more easily to add into the copolymer than AM to form random copolymers with a slight alternating tendency. Solution rheology and molecular size of the copolymers as a function of M w were studied in 1 M NaCl solution, a near θ-solution, by rotational rheometer and light scattering methods, respectively. Undisturbed dimension of the copolymers was evaluated according to Stockmayer-Fixman relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Myagchenkov VA, Kurenkov VF (1991) Applications of acrylamide polymers and copolymers—a review. Polym Plast Technol 30(2–3):109–135. doi:10.1080/03602559108020132

    Article  CAS  Google Scholar 

  2. York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60(9):1018–1036. doi:10.1016/j.addr.2008.02.006

    Article  CAS  Google Scholar 

  3. Kuang W, Zhao X (2013) Synthesis, characterization, and properties of novel hydrophobically associating fluorinated copolymers for DNA delivery. React Funct Polym 73(5):703–709. doi:10.1016/j.reactfunctpolym.2013.02.010

    Article  CAS  Google Scholar 

  4. Xue W, Huglin MB, Liao B (2006) Observations on the swelling characteristics of the zwitterionic hydrogel of poly(1-3-sulfopropyl)-2-vinyl-pyridinium-betaine hydrogel. Eur Polym J 42(11):3015–3023. doi:10.1016/j.eurpolymj.2006.07.015

    Article  CAS  Google Scholar 

  5. Lee WF, Wu RJ (1996) Superabsorbent polymeric materials.1. Swelling behaviors of crosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in aqueous salt solution. J Appl Polym Sci 62(7):1099–1114. doi:10.1002/(sici)1097-4628(19961114)62:7<1099::aid-app16>3.0.co;2-1

    Article  CAS  Google Scholar 

  6. Lee WF, Wu RJ (1997) Superabsorbent polymeric materials.2. Swelling behavior of crosslinked poly sodium acrylate-co-3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate in aqueous salt solution. J Appl Polym Sci 64(9):1701–1712. doi:10.1002/(sici)1097-4628(19970531)64:9<1701::aid-app5>3.0.co;2-j

    Article  CAS  Google Scholar 

  7. Li L, Marchant RE, Dubnisheva A, Roy S, Fissell WH (2011) Anti-biofouling sulfobetaine polymer thin films on silicon and silicon nanopore membranes. J Biomater Sci Polym Ed 22(1–3):91–106. doi:10.1163/092050609x12578498982998

    Article  Google Scholar 

  8. Wu L, Jasinski J, Krishnan S (2012) Carboxybetaine, sulfobetaine, and cationic block copolymer coatings: a comparison of the surface properties and antibiofouling behavior. J Appl Polym Sci 124(3):2154–2170. doi:10.1002/app.35233

    Article  CAS  Google Scholar 

  9. Gunkel G, Huck WTS (2013) Cooperative adsorption of lipoprotein phospholipids, triglycerides, and cholesteryl esters are a key factor in nonspecific adsorption from blood plasma to antifouling polymer surfaces. J Am Chem Soc 135(18):7047–7052. doi:10.1021/ja402126t

    Article  CAS  Google Scholar 

  10. Hoshi Y, Xu Y, Ober CK (2013) Photo-cleavable anti-fouling polymer brushes: a simple and versatile platform for multicomponent protein patterning. Polymer 54(7):1762–1767. doi:10.1016/j.polymer.2013.02.027

    Article  CAS  Google Scholar 

  11. McCormick CL, Salazar LC (1992) Water-soluble copolymers.46. Hydrophilic sulfobetaine copolymers of acrylamide and 3-(2-acrylamido-2-methylpropanedimethyl-ammonio)-1-propanesulphonate. Polymer 33(21):4617–4624. doi:10.1016/0032-3861(92)90422-s

    Article  CAS  Google Scholar 

  12. Donovan MS, Lowe AB, Sanford TA, McCormick CL (2003) Sulfobetaine-containing diblock and triblock copolymers via reversible addition-fragmentation chain transfer polymerization in aqueous media. J Polym Sci A Polym Chem 41(9):1262–1281. doi:10.1002/pola.10658

    Article  CAS  Google Scholar 

  13. Woodfield PA, Zhu Y, Pei Y, Roth PJ (2014) Hydrophobically modified sulfobetaine copolymers with tunable aqueous UCST through postpolymerization modification of poly(pentafluorophenyl acrylate). Macromolecules 47(2):750–762. doi:10.1021/ma402391a

    Article  CAS  Google Scholar 

  14. Soto VMM, Galin JC (1984) Poly(sulphopropylbetaines).1. Synthesis and characterization. Polymer 25(1):121–128

    Article  Google Scholar 

  15. Soto VMM, Galin JC (1984) Poly(sulphopropylbetaines).2. Dilute-solution properties. Polymer 25(2):254–262

    Article  CAS  Google Scholar 

  16. Wang H, Hirano T, Seno M, Sato T (2003) Radical polymerization behavior of 3-(N-2-methacryloyloxyethyl-N, N-dimethyl)ammonatopropanesulfonate in water. Eur Polym J 39(11):2107–2114. doi:10.1016/s0014-3057(03)00156-3

    Article  CAS  Google Scholar 

  17. Gauthier M, Carrozzella T, Penlidis A (2002) Sulfobetaine zwitterionomers based on n-butyl acrylate and 2-ethoxyethyl acrylate: monomer synthesis and copolymerization behavior. J Polym Sci A Polym Chem 40(4):511–523

    Article  CAS  Google Scholar 

  18. Liaw DJ, Lee WF (1985) Thermal-degradation of poly 3-dimethyl(methylmethacryloylethyl) ammonium propanesulfonate. J Appl Polym Sci 30(12):4697–4706. doi:10.1002/app.1985.070301216

    Article  CAS  Google Scholar 

  19. Huglin MB, Radwan MA (1991) Properties of poly N-2-(methyacryloyloxy)ethyl-N, N-dimethyl-N-3-sulfopropylammonium betaine in dilute-solution. Makromol Chem Macromol Chem Phys 192(10):2433–2445

    Article  CAS  Google Scholar 

  20. Liaw DJ, Huang CC (2002) Effect of salt and surfactant on aqueous solution properties of pyrene-labeled poly(3-dimethyl (methylmethacryloyl ethyl) ammonium propane sulfonate). Macromol Symp 179(1):209–222. doi:10.1002/1521-3900(200203)179:1<209::aid-masy209>3.0.co;2-o

    Article  CAS  Google Scholar 

  21. Huglin MB, Rego JM (1991) Observations on the copolymerization of charged monomers. Polym Commun 32(5):130–133

    CAS  Google Scholar 

  22. Rego JM, Huglin MB (1991) Influence of composition on properties of hydrogels of 2-hydroxyethyl methacrylate with a sulfobetaine comonomer. Polym J 23(12):1425–1434. doi:10.1295/polymj.23.1425

    Article  CAS  Google Scholar 

  23. Kostova B, Kamenska E, Ivanov I, Kamenova I, Rachev D, Georgiev G (2008) Copolymer zwitteriones as new sustained drug delivery systems. God Sofii Univ Sv Kliment Okhridski Khim Fak 100(1):91–105

    CAS  Google Scholar 

  24. Chang Y, Yandi W, Chen W-Y, Shih Y-J, Yang C-C, Chang Y, Ling Q-D, Higuchi A (2010) Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromolecules 11(4):1101–1110. doi:10.1021/bm100093g

    Article  Google Scholar 

  25. Han D-S, Gong M-S (2010) New efficient polyelectrolyte containing zwitterionic sulfobetaine salt for the high sensitive resistive humidity sensor. Macromol Res 18(3):260–265. doi:10.1007/s13233-010-0307-5

    Article  CAS  Google Scholar 

  26. Kathmann EE, White LA, McCormick CL (1997) Water soluble polymers.69. pH and electrolyte responsive copolymers of acrylamide and the zwitterionic monomer 4-(2-acrylamido-2-methyl propyldimethyl-ammonio) butanoate: synthesis and solution behaviour. Polymer 38(4):871–878. doi:10.1016/s0032-3861(96)00586-1

    Article  CAS  Google Scholar 

  27. Armentrout RS, McCormick CL (2000) Water soluble polymers. 76. Electrolyte responsive cyclocopolymers with sulfobetaine units exhibiting polyelectrolyte or polyampholyte behavior in aqueous media. Macromolecules 33(2):419–424. doi:10.1021/ma991133b

    Article  CAS  Google Scholar 

  28. Liaw DJ, Huang CC, Wu PL (2002) Effect of surfactant and various-salts on aqueous solution properties of naphthalene-labeled poly(hydrochloride-quaternized 2-norbornene-5-methylamine) made by ring-opening metathesis polymerization (ROMP). Macromol Chem Phys 203(15):2177–2187. doi:10.1002/1521-3935(200211)203:15<2177::aid-macp2177>3.0.co;2-s

    Article  CAS  Google Scholar 

  29. Virtanen J, Arotcarena M, Heise B, Ishaya S, Laschewsky A, Tenhu H (2002) Dissolution and aggregation of a poly(NIPA-block-sulfobetaine) copolymer in water and saline aqueous solutions. Langmuir 18(14):5360–5365. doi:10.1021/la0118208

    Article  CAS  Google Scholar 

  30. Varghese S, Chang C-W, Hwang Y (2013) Synthetic heparin mimetic and acrylamide polymer hydrogel matrices for self-renewal and expansion of stem cells. US20130177980A1

  31. Che Y-J, Tan Y, Cao J, Xu G-Y (2010) Aggregation behavior of copolymer containing sulfobetaine structure in aqueous solution. J Macromol Sci B Phys 49(4):695–710. doi:10.1080/00222341003598281

    Article  CAS  Google Scholar 

  32. Georgiev G, Dyankova K, Vassileva E, Friedrich K (2006) High synthesis and some mechanical properties of polysulfobetaine - polyacrylamide double networks. E-Polymers. doi:054

  33. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York

    Google Scholar 

  34. Huglin MB (1972) Light scattering from polymer solutions. Academic, London

    Google Scholar 

  35. Berry GC (1966) Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes. J Chem Phys 44(12):4550–4564. doi:10.1063/1.1726673

    Article  CAS  Google Scholar 

  36. Pan Z (2003) Polymer chemistry, 3rd edn. Chemical Industry Press, Peking

    Google Scholar 

  37. Fineman M, Ross SD (1950) Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci 5(2):259–262. doi:10.1002/pol.1950.120050210

    Article  CAS  Google Scholar 

  38. Kelen T, Tüdös F (1975) Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method. J Macromol Sci A Chem 9(1):1–27. doi:10.1080/00222337508068644

    Article  Google Scholar 

  39. Alfrey T, Goldfinger G (1944) The mechanism of copolymerization. J Chem Phys 12(6):205–209. doi:10.1063/1.1723934

    Article  CAS  Google Scholar 

  40. McCormick CL, Hutchinson BH, Morgan SE (1987) Water-soluble copolymers: 16. Studies of the behavior of acrylamide-N-(1,1-dimethyl-3-oxobutyl)acrylamide copolymers in aqueous salt-solutions. Makromol Chem Macromol Chem Phys 188(2):357–370

    Article  CAS  Google Scholar 

  41. McCormick CL, Chen GS (1984) Water-soluble copolymers: 9. Copolymers of acrylamide with N-(1,1-dimethyl-3-oxybutyl)acrylamide and N, N-dimethylacrylamide - synthesis and characterization. J Polym Sci A Polym Chem 22(12):3633–3647. doi:10.1002/pol.1984.170221202

    Article  CAS  Google Scholar 

  42. McCormick CL, Blackmon KP (1986) Water-soluble copolymers: 23. Copolymers of acrylamide with N-(1,1-dimethyl-3-oxobutyl)-N-(N-propyl)acrylamide—synthesis and characterization. Angew Makromol Chem 144:73–86. doi:10.1002/apmc.1986.051440106

    Article  CAS  Google Scholar 

  43. Mumick PS, McCormick CL (1994) Water-soluble copolymers: 54. N-isopropylacrylamide-co-acrylamide copolymers in drag reduction - synthesis, characterization, and dilute-solution behavior. Polym Eng Sci 34(18):1419–1428. doi:10.1002/pen.760341809

    Article  CAS  Google Scholar 

  44. McCormick CL, Blackmon KP (1986) Water-soluble copolymers: 12. Copolymers of acrylamide with sodium-3-acrylamido-3-methylbutanoate—synthesis and characterization. J Polym Sci A Polym Chem 24(10):2635–2645. doi:10.1002/pola.1986.080241020

    Article  CAS  Google Scholar 

  45. McCormick CL, Blackmon KP, Elliott DL (1986) Water-soluble copolymers: 20. Copolymers of acrylamide with sodium 3-(N-propyl)acrylamido-3-methylbutanoate—solution properties. J Macromol Sci Chem A23(12):1469–1486. doi:10.1080/00222338608081137

    Article  CAS  Google Scholar 

  46. McCormick CL, Blackmon KP (1986) Water-soluble copolymers: 21. Copolymers of acrylamide with 2-acrylamido-2-methylpropanedimethylammonium chloride—synthesis and characterization. Polymer 27(12):1971–1975. doi:10.1016/0032-3861(86)90192-8

    Article  CAS  Google Scholar 

  47. McCormick CL, Chen GS (1982) Water-soluble copolymers: 4. Random copolymers of acrylamide with sulfonated co-monomers. J Polym Sci A Polym Chem 20(3):817–838. doi:10.1002/pol.1982.170200319

    Article  CAS  Google Scholar 

  48. McCormick CL, Salazar LC (1993) Water-soluble copolymers: 42. Cationic polyelectrolytes of acrylamide and 2-acrylamido-2-methylpropanetrimethylammonium chloride. J Polym Sci A Polym Chem 31(5):1099–1104. doi:10.1002/pola.1993.080310501

    Article  CAS  Google Scholar 

  49. Kathmann EE, White LA, McCormick CL (1996) Water-soluble copolymers: 67. Polyelectrolytes of N-vinylformamide with sodium 3-acrylamido-3-methylbutanoate, sodium 2-acrylamido-2-methylpropanesulfonate, and sodium acrylate: synthesis and characterization. Macromolecules 29(16):5268–5272. doi:10.1021/ma9518520

    Article  CAS  Google Scholar 

  50. Bune YV, Barabanova AI, Bogachev YS, Gromov VF (1997) Copolymerization of acrylamide with various water-soluble monomers. Eur Polym J 33(8):1313–1323. doi:10.1016/s0014-3057(96)00258-3

    Article  CAS  Google Scholar 

  51. Tanaka H (1986) Copolymerization of cationic monomers with acrylamide in an aqueous-solution. J Polym Sci A Polym Chem 24(1):29–36. doi:10.1002/pol.1986.170240103

    Article  CAS  Google Scholar 

  52. Smets G, Hesbain AM (1959) Hydrolysis of polyacrylamide and acrylic acid-acrylamide copolymers. J Polym Sci 40(136):217–226. doi:10.1002/pol.1959.1204013616

    Article  CAS  Google Scholar 

  53. Riahinezhad M, Kazemi N, McManus N, Penlidis A (2013) Optimal estimation of reactivity ratios for acrylamide/acrylic acid copolymerization. J Polym Sci A Polym Chem 51(22):4819–4827. doi:10.1002/pola.26906

    Article  CAS  Google Scholar 

  54. Baade W, Hunkeler D, Hamielec AE (1989) Copolymerization of acrylamide with cationic monomers in solution and inverse-microsuspension. J Appl Polym Sci 38(1):185–201. doi:10.1002/app.1989.070380117

    Article  CAS  Google Scholar 

  55. Igarashi S (1963) Representation of composition and blockiness of the copolymer by a triangular coordinate system. J Polym Sci B Polym Lett 1(7):359–363. doi:10.1002/pol.1963.110010706

    Article  Google Scholar 

  56. Pyun CW (1970) Comonomer and stereosequence distributions in high polymers. J Polym Sci A2 Polym Phys 8(7):1111–1126. doi:10.1002/pol.1970.160080707

    Article  CAS  Google Scholar 

  57. Georgiev GS (1978) General method for evaluation of alternating tendency in copolymerization. J Macromol Sci A Chem 12(8):1175–1195. doi:10.1080/00222337808063182

    Article  Google Scholar 

  58. Alfrey T, Price CC (1947) Relative reactivities in vinyl copolymerization. J Polym Sci 2(1):101–106. doi:10.1002/pol.1947.120020112

    Article  CAS  Google Scholar 

  59. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  60. Shukla A, Srivastava AK (2003) Free radical copolymerization of acrylamide and linalool with functional group as a pendant. High Perform Polym 15(3):243–257. doi:10.1177/0954008303015003002

    Article  CAS  Google Scholar 

  61. Ye T, Song Y, Zheng Q (2014) Solubility and solution rheology of acrylamide-sulfobetaine copolymers. Colloid Polym Sci 292(9):2185–2195. doi:10.1007/s00396-014-3246-4

    Article  CAS  Google Scholar 

  62. Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New York

    Google Scholar 

  63. Sakai T (1968) Huggins constant k’ for flexible chain polymers. J Polym Sci A2 Polym Phys 6(8):1535–1549. doi:10.1002/pol.1968.160060810

    Article  CAS  Google Scholar 

  64. Halabalova W, Simek L, Dostal J, Bohdanecky M (2004) Note on the relation betweeen the parameters of the Mark-Houwink-Kuhn-Sakurada equation. Int J Polym Anal Charact 9(1–3):65–75. doi:10.1080/10236660490890484

    Article  CAS  Google Scholar 

  65. Bohdanecky M, Petrus V, Horsky J (1995) Hydrodynamic properties of dilute aqueous-solutions of poly(N-ethylmethacrylamide). Macromolecules 28(24):8344–8349. doi:10.1021/ma00128a051

    Article  CAS  Google Scholar 

  66. Bohdanecky M (1996) Mark-Houwink-Kuhn-Sakurada exponent at the Theta condition. Its invariancy with respect to the cross-sectional dimensions of polymer chains. Macromolecules 29(6):2265–2268. doi:10.1021/ma9507507

    Article  CAS  Google Scholar 

  67. McCarthy KJ, Burkhardt CW, Parazak DP (1987) Mark-Houwink-Sakurada constants and dilute-solution behavior of heterodisperse poly(acrylamide-co-sodium acrylate) in 0.5m and 1m NaCl. J Appl Polym Sci 33(5):1699–1714. doi:10.1002/app.1987.070330523

    Article  CAS  Google Scholar 

  68. Bai LB, Zheng RR, Li WL, Wu YG, Ba XW, Wang HJ (2013) A synthetic approach for water soluble hyperbranched poly(N, N-ethylidenebis(N-2-chloroacetyl acrylamide)) with high degree of branching via atom transfer radical polymerization/self-condensing vinyl polymerization. Chin J Polym Sci 31(7):1038–1045. doi:10.1007/s10118-013-1257-0

    Article  CAS  Google Scholar 

  69. Bohdanecky M, Netopilik M (1995) The Mark-Houwink-Kuhn-Sakurada exponent of polymers with long side-groups—is a(0)=1/2 a reliable criterion of the theta-state. Polymer 36(17):3377–3384. doi:10.1016/0032-3861(95)99439-2

    Article  CAS  Google Scholar 

  70. Stockmayer WH, Fixman M (1963) On the estimation of unperturbed dimensions from intrinsic viscositiesxcin. J Polym Sci C Polym Symp 1(1):137–141. doi:10.1002/polc.5070010109

    Article  Google Scholar 

  71. Kurata M, Stockmayer W (1963) Intrinsic viscosities and unperturbed dimensions of long chain molecules. In: Fortschritte Der Hochpolymeren-Forschung, vol 3/2. Advances in Polymer Science. Springer Berlin Heidelberg, pp 196–312. doi: 10.1007/BFb0050490

  72. Buhler E, Boué F (2004) Chain persistence length and structure in hyaluronan solutions: ionic strength dependence for a model semirigid polyelectrolyte. Macromolecules 37(4):1600–1610. doi:10.1021/ma0215520

    Article  CAS  Google Scholar 

  73. Hester RD, Mitchell PH (1980) A new universal GPC calibration method. J Polym Sci Polym Chem Ed 18(6):1727–1738. doi:10.1002/pol.1980.170180608

    Article  CAS  Google Scholar 

  74. Fevola MJ, Bridges JK, Kellum MG, Hester RD, McCormick CL (2004) pH-responsive polyzwitterions: a comparative study of acrylamide-based polyampholyte terpolymers and polybetaine copolymers. J Appl Polym Sci 94(1):24–39. doi:10.1002/app.20700

    Article  CAS  Google Scholar 

  75. Ezell RG, Gorman I, Lokitz B, Ayres N, McCormick CL (2006) Stimuli-responsive ampholytic terpolymers of N-acryloyl-valine, acrylamide, and (3-acrylamidopropyl)trimethylammonium chloride: synthesis, characterization, and solution properties. J Polym Sci A Polym Chem 44(9):3125–3139. doi:10.1002/pola.21408

    Article  CAS  Google Scholar 

  76. Fevola MJ, Bridges JK, Kellum MG, Hester RD, McCormick CL (2004) pH-responsive ampholytic terpolymers of acrylamide, sodium 3-acrylamido-3-methylbutanoate, and (3-acrylamidopropyl)trimethylammonium chloride. I. Synthesis and characterization. J Polym Sci A Polym Chem 42(13):3236–3251. doi:10.1002/pola.20173

    Article  CAS  Google Scholar 

  77. Feng XS, Taton D, Chaikof EL, Gnanou Y (2005) Toward an easy access to dendrimer-like poly(ethylene oxide)s. J Am Chem Soc 127(31):10956–10966. doi:10.1021/ja0509432

    Article  CAS  Google Scholar 

  78. Trollsas M, Atthof B, Wursch A, Hedrick JL, Pople JA, Gast AP (2000) Constitutional isomers of dendrimer-like star polymers: design, synthesis, and conformational and structural properties. Macromolecules 33(17):6423–6438. doi:10.1021/ma000321v

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihu Song or Qiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Song, Y. & Zheng, Q. Synthesis and solution property of acrylamide-sulfobetaine copolymers. Colloid Polym Sci 293, 797–807 (2015). https://doi.org/10.1007/s00396-014-3467-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3467-6

Keywords

Navigation