Skip to main content
Log in

Nanoparticle directed domain orientation in thin films of asymmetric block copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We investigated the thin film morphology of two different asymmetric block copolymers (BCP), polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and poly(n-pentyl methacrylate)-block-poly(methyl methacrylate) (PPMA-b-PMMA), loaded with pre-synthesized iron oxide nanoparticles (NP). The chemical composition of the BCP constituents determines the strength of the interaction between polymer chains and nanoparticles. In the case of NP/PS-b-P4VP system, the nanoparticles interact preferentially with the P4VP block and hence localize selectively in the P4VP cylindrical microdomains. However, for the NP/PPMA-b-PMMA system, the nanoparticles have no significant preference for the copolymer blocks and segregate at the polymer/substrate interface. Interestingly, this changes the effective substrate surface energy and hence leads to a remarkable change in domain orientation from parallel to perpendicular with respect to the substrate. These results clearly demonstrate the importance of both enthalpic and entropic factors which determine spatial distribution of NP in BCP films and influence domain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCP:

Block copolymer

PS:

Polystyrene

P4VP:

Poly(4-vinylpyridine)

PPMA:

Poly(n-pentyl methacrylate)

PMMA:

Poly(methyl methacrylate)

NP:

Nanoparticles

TOPO:

Tri-n-octylphosphine oxide

References

  1. Crossland EJW, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies DM, Toombes GES, Hillmyer MA, Ludwigs S, Steiner U, Snaith HJ (2009) A bicontinuous double gyroid hybrid solar cell. Nano Lett 9:2807–2812

    Article  CAS  Google Scholar 

  2. Faustini M, Vayer M, Marmiroli B, Hillmyer M, Amenitsch H, Sinturel C, Grosso D (2010) Bottom-up approach toward titanosilicate mesoporous pillared planar nanochannels for nanofluidic applications. Chem Mater 22:5687–5694

    Article  CAS  Google Scholar 

  3. Orilall MC, Wiesner U (2011) Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem Soc Rev 40:520–535

    Article  CAS  Google Scholar 

  4. Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotechnology 14:R39–R54

    Article  CAS  Google Scholar 

  5. Segalman RA (2005) Patterning with block copolymer thin films. Mater Sci Eng R 48:191–226

    Article  Google Scholar 

  6. Haryono A, Binder WH (2006) Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2:600–611

    Article  CAS  Google Scholar 

  7. Kao J, Thorkelsson K, Bai P, Rancatore BJ, Xu T (2013) Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. Chem Soc Rev 42:2654–2678

    Article  CAS  Google Scholar 

  8. Grubbs RB (2007) Roles of polymer ligands in nanoparticle stabilization. Polym Rev 47:197–215

    Article  CAS  Google Scholar 

  9. Chiu JJ, Kim BJ, Kramer EJ, Pine DJ (2005) Control of nanoparticle location in block copolymers. J Am Chem Soc 127:5036–5037

    Article  CAS  Google Scholar 

  10. Li Y, Tao P, Viswanath A, Benicewicz BC, Schadler LS (2013) Bimodal surface ligand engineering: the key to tunable nanocomposites. Langmuir 29:1211–1220

    Article  Google Scholar 

  11. Kim BJ, Fredrickson GH, Kramer EJ (2008) Effect of polymer ligand molecular weight on polymer-coated nanoparticle location in block copolymers. Macromolecules 41:436–447

    Article  CAS  Google Scholar 

  12. Corbierre MK, Cameron NS, Sutton M, Laaziri K, Lennox RB (2005) Gold nanoparticle/polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density. Langmuir 21:6063–6072

    Article  CAS  Google Scholar 

  13. Kim BJ, Bang J, Hawker CJ, Kramer EJ (2006) Effect of a real chain density on the location of polymer-modified gold nanoparticles in a block copolymer template. Macromolecules 39:4108–4114

    Article  CAS  Google Scholar 

  14. Bockstaller MR, Lapetnikov Y, Margel S, Thomas EL (2003) Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J Am Chem Soc 125:5276–5277

    Article  CAS  Google Scholar 

  15. Lin Y, Boker A, He JB, Sill K, Xiang HQ, Abetz C, Li XF, Wang J, Emrick T, Long S, Wang Q, Balazs A, Russell TP (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55–59

    Article  CAS  Google Scholar 

  16. Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, Disalvo FJ, Wiesner U (2008) Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 320:1748–1752

    Article  CAS  Google Scholar 

  17. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  CAS  Google Scholar 

  18. Lee JY, Thompson RB, Jasnow D, Balazs AC (2002) Entropically driven formation of hierarchically ordered nanocomposites. Phys Rev Lett 89(15):155503

    Article  Google Scholar 

  19. Lee JY, Shou ZY, Balazs AC (2003) Predicting the morphologies of confined copolymer/nanoparticle mixtures. Macromolecules 36:7730–7739

    Article  CAS  Google Scholar 

  20. Lo CT, Lee B, Pol VG, Rago NLD, Seifert S, Winans RE, Thiyagarajan P (2007) Effect of molecular properties of block copolymers and nanoparticles on the morphology of self-assembled bulk nanocomposites. Macromolecules 40:8302–8310

    Article  CAS  Google Scholar 

  21. Listak J, Bockstaller MR (2006) Stabilization of grain boundary morphologies in lamellar block copolymer/nanoparticle blends. Macromolecules 39:5820–5825

    Article  CAS  Google Scholar 

  22. Schultz AJ, Hall CK, Genzer J (2005) Computer simulation of block copolymer/nanoparticle composites. Macromolecules 38:3007–3016

    Article  CAS  Google Scholar 

  23. Kim BJ, Fredrickson GH, Hawker CJ, Kramer EJ (2007) Nanoparticle surfactants as a route to bicontinuous block copolymer morphologies. Langmuir 23:7804–7809

    Article  CAS  Google Scholar 

  24. Jang SG, Kim BJ, Hawker CJ, Kramer EJ (2011) Bicontinuous block copolymer morphologies produced by interfacially active, thermally stable nanoparticles. Macromolecules 44:9366–9373

    Article  CAS  Google Scholar 

  25. Nandan B, Gowd EB, Bigall NC, Eychmuller A, Formanek P, Simon P, Stamm M (2009) Arrays of inorganic nanodots and nanowires using nanotemplates based on switchable block copolymer supramolecular assemblies. Adv Funct Mater 19:2805–2811

    Article  CAS  Google Scholar 

  26. Gowd EB, Nandan B, Vyas MK, Bigall NC, Eychmuller A, Schlorb H, Stamm M (2009) Highly ordered palladium nanodots and nanowires from switchable block copolymer thin films. Nanotechnology 20(41):415302

    Article  Google Scholar 

  27. Horechyy A, Zafeiropoulos NE, Nandan B, Formanek P, Simon F, Kiriy A, Stamm M (2010) Highly ordered arrays of magnetic nanoparticles prepared via block copolymer assembly. J Mater Chem 20:7734–7741

    Article  CAS  Google Scholar 

  28. Xu C, Ohno K, Ladmiral V, Milkie DE, Kikkawa JM, Composto RJ (2009) Simultaneous block copolymer and magnetic nanoparticle assembly in nanocomposite films. Macromolecules 42:1219–1228

    Article  CAS  Google Scholar 

  29. Xu C, Ohno K, Ladmiral V, Composto RJ (2008) Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer 49:3568–3577

    Article  CAS  Google Scholar 

  30. Park MJ, Char K (2006) Effect of the casting solvent on the morphology of poly(styrene-b-isoprene) diblock copolymer/magnetic nanoparticle mixtures. Langmuir 22:1375–1378

    Article  CAS  Google Scholar 

  31. Char K, Park MJ (2009) Selective distribution of interacting magnetic nanoparticles into block copolymer domains based on the facile inversion of micelles. React Funct Polym 69:546–551

    Article  CAS  Google Scholar 

  32. Albert JNL, Epps TH (2010) Self-assembly of block copolymer thin films. Mater Today 13:24–33

    Article  CAS  Google Scholar 

  33. Fasolka MJ, Mayes AM (2001) Block copolymer thin films: physics and applications. Annu Rev Mater Res 31:323–355

    Article  CAS  Google Scholar 

  34. Jehnichen D, Pospiech D, Keska R, Ptacek S, Papadakis CM (2008) Analysis of thin nanostructured block copolymer films by GISAXS and AFM. J Nanostruct Polym Nanocomp 4:119–127

    Google Scholar 

  35. Fasolka MJ, Banerjee P, Mayes AM, Pickett G, Balazs AC (2000) Morphology of ultrathin supported diblock copolymer films: theory and experiment. Macromolecules 33:5702–5712

    Article  CAS  Google Scholar 

  36. Zhang XH, Berry BC, Yager KG, Kim S, Jones RL, Satija S, Pickel DL, Douglas JF, Karim A (2008) Surface morphology diagram for cylinder-forming block copolymer thin films. ACS Nano 2:2331–2341

    Article  CAS  Google Scholar 

  37. Knoll A, Lyakhova KS, Horvat A, Krausch G, Sevink GJA, Zvelindovsky AV, Magerle R (2004) Direct imaging and mesoscale modelling of phase transitions in a nanostructured fluid. Nat Mater 3:886–890

    Article  CAS  Google Scholar 

  38. Yoo M, Kim S, Jang SG, Choi SH, Yang H, Kramer EJ, Lee WB, Kim BJ, Bang J (2011) Controlling the orientation of block copolymer thin films using thermally-stable gold nanoparticles with tuned surface chemistry. Macromolecules 44:9356–9365

    Article  CAS  Google Scholar 

  39. Kashem MMA, Perlich J, Schulz L, Roth SV, Petry W, Muller-Buschbaum P (2007) Maghemite nanoparticles on supported diblock copolymer nanostructures. Macromolecules 40:5075–5083

    Article  CAS  Google Scholar 

  40. Kashem MMA, Perlich J, Schulz L, Roth SV, Muller-Buschbaum P (2008) Correlated roughness in polymer films containing maghemite nanoparticles. Macromolecules 41:2186–2194

    Article  CAS  Google Scholar 

  41. Lauter V, Muller-Buschbaum P, Lauter H, Petry W (2011) Morphology of thin nanocomposite films of asymmetric diblock copolymer and magnetite nanoparticles. J Phys Condens Matter 23:6

    Article  Google Scholar 

  42. Xia X, Metwalli E, Ruderer MA, Korstgens V, Busch P, Boni P, Muller-Buschbaum P (2011) Nanostructured diblock copolymer films with embedded magnetic nanoparticles. J Phys Condens Matter 23:9

    Article  Google Scholar 

  43. Kashem MMA, Perlich J, Diethert A, Wang WN, Memesa M, Gutmann JS, Majkova E, Capek I, Roth SV, Petry W, Muller-Buschbaum P (2009) Array of magnetic nanoparticles via particle co-operated self-assembly in block copolymer thin film. Macromolecules 42:6202–6208

    Article  Google Scholar 

  44. Keska R, Pospiech D, Eckstein K, Jehnichen D, Ptacek S, Häußler L, Friedel P, Janke A, Voit B (2006) Study of the phase behavior of poly(pentyl methacrylate-b-methyl methacrylate) diblock copolymers. J Nanostruct Polym Nanocomp 2:43–52

    Google Scholar 

  45. Werner S, Pospiech D, Jehnichen D, Eckstein K, Komber H, Friedel P, Janke A, Nather F, Reuter U, Voit B, Taurino R, Messori M (2011) Synthesis and phase-separation behavior of alpha, omega-difunctionalized diblock copolymers. J Polym Sci A Polym Chem 49:926–937

    Article  CAS  Google Scholar 

  46. Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  Google Scholar 

  47. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics—theory and experiment. Annu Rev Phys Chem 41:525–557

    Article  CAS  Google Scholar 

  48. Krikorian V, Kang Y, Thomas EL (2007) Self-assembly and morphology diagrams for solution and bulk materials: experimental aspects. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering, precise synthesis, materials properties, applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1387–1430

    Google Scholar 

  49. Roland S, Gaspard D, Prud’homme RE, Bazuin CG (2012) Morphology evolution in slowly dip-coated supramolecular PS-b-P4VP thin films. Macromolecules 45:5463–5476

    Article  CAS  Google Scholar 

  50. Muller-Buschbaum P (2003) Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films. Anal Bioanal Chem 376:3–10

    CAS  Google Scholar 

  51. Huh J, Ginzburg VV, Balazs AC (2000) Thermodynamic behavior of particle/diblock copolymer mixtures: simulation and theory. Macromolecules 33:8085–8096

    Article  CAS  Google Scholar 

  52. Lo CT, Chang YC, Wu SC, Lee CL (2010) Effect of particle size on the phase behavior of block copolymer/nanoparticle composites. Colloids Surf A Physicochem Eng Asp 368:6–12

    Article  CAS  Google Scholar 

  53. Jehnichen D, Pospiech D, Ptacek S, Eckstein K, Friedel P, Janke A, Papadakis CM (2009) Nanophase-separated diblock copolymers: structure investigations on PPMA-b-PMMA using X-ray scattering methods. Z Kristallogr 30(2009):485–490

    Article  Google Scholar 

  54. Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam

  55. Van Ekenstein G, Meyboom R, Ten Brinke G, Ikkala O (2000) Determination of the Flory-Huggins interaction parameter of styrene and 4-vinylpyridine using copolymer blends of poly(styrene-co-4-vinylpyridine) and polystyrene. Macromolecules 33:3752–3756

    Article  Google Scholar 

  56. Scherble J, Stark B, Stuhn B, Kressler J, Budde H, Horing S, Schubert DW, Simon P, Stamm M (1999) Comparison of interfacial width of block copolymers of d(8)-poly(methyl methacrylate) with various poly(n-alkyl methacrylate)s and the respective homopolymer pairs as measured by neutron reflection. Macromolecules 32:1859–1864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the German Research Council (Deutsche Forschungsgemeinschaft, project no. STA 324/38-1 and STA324/37) is gratefully acknowledged. The authors would like to thank DESY Hamburg, HASYLAB, beamline BW4 for measuring time, and Dr. J. Perlich for collaboration and assistance. We greatly acknowledge Dr. Mahmoud Al-Hussein from the University of Jordan for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Horechyy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 74.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horechyy, A., Nandan, B., Zafeiropoulos, N.E. et al. Nanoparticle directed domain orientation in thin films of asymmetric block copolymers. Colloid Polym Sci 292, 2249–2260 (2014). https://doi.org/10.1007/s00396-014-3251-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3251-7

Keywords

Navigation