Skip to main content
Log in

Patterned monomolecular films from polymerizable and fluorinated lipids for the presentation of glycosylated lipids

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This paper deals with pattern formation in Langmuir monolayers of two sets of lipid mixtures that include (1) a fluorinated lipid for phase separation, (2) a polymerizable lipid for stabilization of the patterned structure, and (3) a unit for the presentation of biological recognition units. Differences in the distribution of these functionalities allow a polymerization of dispersed or continuous phase and a placement of the recognition units in crystalline or solid analogue phase. Also, a ternary mixture including a lipid modified with the tandem repeat domain of MUC1 plus a TN-antigen was studied. Based on the biphasic pattern obtained (starlike crystals of up to 50 μm with a fine structure of some micrometers), we also verified the potential of the laterally patterned monolayer to stimulate the immune system (quartz crystal microbalance). The second set of lipids combines a highly fluorinated itaconic ester (polymerizable unit) with the natural phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gottenbos B, Busscher HJ, Van Der Mei HC, Nieuwenhuis P (2002) Pathogenesis and prevention of biomaterial centered infections. J Mater Sci Mater Med 13:717–722

    Article  CAS  Google Scholar 

  2. Elbert DL, Hubbell JA (1996) Surface treatments of polymers for biocompatibility. Annu Rev Mater Sci 26:365–394

    Article  CAS  Google Scholar 

  3. Amiji M, Park K (1993) Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. J Biomat Sci Polym Ed 4:217–234

    Article  CAS  Google Scholar 

  4. Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348

    Article  CAS  Google Scholar 

  5. Ariga K, Lvov YM, Kawakami K et al (2011) Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev 63:762–771

    Article  CAS  Google Scholar 

  6. Deshmukh PK, Ramani KP, Singh SS et al (2013) Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Control Release 166:294–306

    Article  CAS  Google Scholar 

  7. Cochin D, Passmann M, Zentel R et al (1997) Layered nanostructures with LC-polymers, polyelectrolytes, and inorganics. Macromolecules 30:4775–4779

    Article  CAS  Google Scholar 

  8. Moran-Mirabal JM, Aubrecht DM, Craighead HG (2007) Phase separation and fractal domain formation in phospholipid/diacetylene-supported lipid bilayers. Langmuir 23:10661–10671

    Article  CAS  Google Scholar 

  9. Maaloum M, Muller P, Krafft MP (2004) Lateral and vertical nanophase separation in Langmuir-Blodgett films of phospholipids and semifluorinated alkanes. Langmuir 20:2261–2264

    Article  CAS  Google Scholar 

  10. Clifton LA, Green RJ, Hughes AV, Frazier RA (2008) Interfacial structure of wild-type and mutant forms of puroindoline-b bound to DPPG monolayers. J Phys Chem B 112:15907–15913

    Article  CAS  Google Scholar 

  11. Zou G, Jiang H, Zhang Q et al (2010) Chiroptical switch based on azobenzene-substituted polydiacetylene LB films under thermal and photic stimuli. J Mater Chem 20:285–291

    Article  CAS  Google Scholar 

  12. Scheibe P, Barz M, Hemmelmann M, Zentel R (2010) Langmuir-Blodgett films of biocompatible poly(HPMA)-block-poly(lauryl methacrylate) and poly(HPMA)-random-poly(lauryl methacrylate): influence of polymer structure on membrane formation and stability. Langmuir 26:5661–5669

    Article  CAS  Google Scholar 

  13. Ringsdorf H, Schlarb B, Venzmer J (1988) Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition and dynamics of biomembranes. Angew Chem Int Ed 27:113–158

    Article  Google Scholar 

  14. Niemelä PS, Ollila S, Hyvo MT et al (2007) Assessing the nature of lipid raft membranes. PLoS Comp Biol 3:304–312

    Article  Google Scholar 

  15. Garcia-Marcos M, Dehaye J-P, Marino A (2009) Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J 276:330–340

    Article  CAS  Google Scholar 

  16. Elson EL, Fried E, Dolbow JE, Genin GM (2010) Phase separation in biological membranes: integration of theory and experiment. Annu Rev Biophys 39:207–226

    Article  CAS  Google Scholar 

  17. Schumacher G, Bakowsky U, Gege C et al (2006) Lessons learned from clustering of fluorinated glycolipids on selectin ligand function in cell rolling. Biochemistry 45:2894–2903

    Article  CAS  Google Scholar 

  18. Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  CAS  Google Scholar 

  19. Dietrich C, Bagatolli LA, Volovyk ZN et al (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  Google Scholar 

  20. Vierling P, Santaella C, Greiner J (2001) Highly fluorinated amphiphiles as drug and gene carrier and delivery systems. J Fluor Chem 107:337–354

    Article  CAS  Google Scholar 

  21. Gaines GL (1966) Insoluble monolayers at liquid-gas interfaces. Wiley, New York

    Google Scholar 

  22. Büschl R, Folda T, Ringsdorf H (1984) Polymeric monolayers and liposomes as models for biomembranes. Makromol Chem Suppl 6:245–258

    Article  Google Scholar 

  23. Scheibe P, Schoenhentz J, Platen T et al (2010) Langmuir-Blodgett films of fluorinated glycolipids and polymerizable lipids and their phase separating behavior. Langmuir 26:18246–18255

    Article  CAS  Google Scholar 

  24. Becker B, Cooper MA (2011) A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J Mol Recognit 24:754–787

    Article  CAS  Google Scholar 

  25. Thompson M, Hayward G (1997) Mass response of the thickness-shear mode acoustic wave sensor in liquids as a central misleading dogma. Proc 1997 I.E. Int Freq Control Symp 114–119

  26. Janshoff A, Galla H-J, Steinem C (2000) Mikrogravimetrische Sensoren in der Bioanalytik - eine Alternative zu optischen Biosensoren? Angew Chem 112:4164–4195

    Article  Google Scholar 

  27. Steinem C, Janshoff A (2007) Piezoelectric sensors. doi: 10.1007/b100347

  28. Hunter AC (2009) Application of the Quartz Crystal Microbalance to Nanomedicine. J Biomed Nanotechnol 5:669–675

    Article  CAS  Google Scholar 

  29. Yang Y, Long Y, Li Z et al (2009) Real-time molecular recognition between protein and photosensitizer of photodynamic therapy by quartz crystal microbalance sensor. Anal Biochem 392:22–27

    Article  CAS  Google Scholar 

  30. Tang Y, Wang Z, Xiao J et al (2009) Studies of phospholipid vesicle deposition/transformation on a polymer surface by dissipative quartz crystal microbalance and atomic force microscopy. J Phys Chem B 113:14925–14933

    Article  CAS  Google Scholar 

  31. Feldötö Z, Pettersson T, Dedinaite A (2008) Mucin-electrolyte interactions at the solid-liquid interface probed by QCM-D. Langmuir 24:3348–3357

    Article  Google Scholar 

  32. Sandberg T, Karlsson Ott M, Carlsson J et al (2009) Potential use of mucins as biomaterial coatings. II. Mucin coatings affect the conformation and neutrophil-activating properties of adsorbed host proteins—toward a mucosal mimic. J Biomed Mater Res A 91:773–785

    Article  Google Scholar 

  33. Laschewsky A, Ringsdorf H, Schmidt G (1985) Polymerization of hydrocarbon and fluorocarbon amphiphiles in Langmuir-Blodgett multilayers. Thin Solid Films 134:153–172

    Article  CAS  Google Scholar 

  34. Lester CL, Guymon CA (2000) Phase behavior and polymerization kinetics of a semifluorinated lyotropic liquid crystal. Macromolecules 33:5448–5454

    Article  CAS  Google Scholar 

  35. Quinn PJ (2011) The structure of complexes between phosphatidylethanolamine and glucosylceramide: a matrix for membrane rafts. Biochim Biophys Acta 1808:2894–2904

    Article  CAS  Google Scholar 

  36. Hoffmann-Röder A, Schoenhentz J, Wagner S, Schmitt E (2011) Perfluoroalkylated amphiphilic MUC1 glycopeptide antigens as tools for cancer immunotherapy. Chem Commun 47:382–384

    Article  Google Scholar 

  37. Elbert R, Folda T, Ringsdorf H (1984) Saturated and polymerizable amphiphiles with fluorocarbon chains. Investigation in monolayers and liposomes. J Am Chem Soc 106:7687–7692

    Article  CAS  Google Scholar 

  38. Müller H, Zentel R, Janshoff A, Janke M (2006) Control of CaCO3 crystallization by demixing of monolayers. Langmuir 22:11034–11040

    Article  Google Scholar 

  39. Manrique-Moreno M, Suwalsky M, Villena F, Garidel P (2010) Effects of the nonsteroidal anti-inflammatory drug naproxen on human erythrocytes and on cell membrane molecular models. Biophys Chem 147:53–58

    Article  CAS  Google Scholar 

  40. Riess J (2002) Fluorous micro- and nanophases with a biomedical perspective. Tetrahedron 58:4113–4131

    Article  CAS  Google Scholar 

  41. Miller R, Vollhardt D, Weidemann G et al (1996) Isotherms of phospholipid monolayers measured by a pendant drop technique. Colloid Polym Sci 274:995–999

    Article  Google Scholar 

  42. Riess JG (2005) Fluorous materials for biomedical uses. In: Gladysz JA, Curran DP, Horvath IT (eds) The handbook of fluorous chemistry. Wiley, Weinheim, pp 521–573

    Chapter  Google Scholar 

  43. Krafft MP (2005) Basic principles and recent advances in fluorinated self-assemblies and colloidal systems. In: Gladysz JA, Curran DP, Horvath IT (eds) The handbook of fluorous chemistry. Wiley, Weinheim, pp 478–490

    Chapter  Google Scholar 

  44. Broniatowski M, Vila-Romeu N, Nieto-Suarez M, Dynarowicz-Łatka P (2007) Nucleation and growth in the collapsed langmuir monolayers from semifluorinated alkanes. J Phys Chem B 111:12787–12794

    Article  CAS  Google Scholar 

  45. Krafft MP, Riess JG (2009) Chemistry, physical chemistry, and uses of molecular fluorocarbon–hydrocarbon diblocks, triblocks, and related compounds—unique “apolar” components for self-assembled colloid and interface engineering. Chem Rev 109:1714–1792

    Article  CAS  Google Scholar 

  46. Lo Nostro P, Chen S-H (1993) Aggregation of a semifluorinated n-alkane in perfluorooctane. J Phys Chem 97:6535–6540

    Article  CAS  Google Scholar 

  47. Bunn CW, Howells ER (1954) Structures of molecules and crystals of fluorocarbons. Nature 174:549–551

    Article  CAS  Google Scholar 

  48. Trabelsi S, Zhang S, Zhang Z et al (2009) Semi-fluorinated phosphonic acids form stable nanoscale clusters in Langmuir–Blodgett and self-assembled monolayers. Soft Matter 5:750

    Article  CAS  Google Scholar 

  49. Seitz M, Ter-Ovanesyan E, Hausch M et al (2000) Formation of tethered supported bilayers by vesicle fusion onto lipopolymer monolayers promoted by osmotic stress. Langmuir 16:6067–6070

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Holger Adam and Martin Bräsel from the group of Prof. Kühnle (University of Mainz) for the help with the AFM measurements. Furthermore, the authors would like to thank Mr. Walter Scholdei (Max Planck Institute for Polymer Research) for the help with the BAM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Zentel.

Additional information

Dear Frieder, from 1986 to about 2001 I had the pleasure of a very close cooperation with you, starting in the time of our “academic graduation (Habilitation)”. Although we worked together mostly on ferroelectric LC-materials and LC-elastomers, I know your interest in biorelated topics. Thus I hope that you enjoy this piece of work, which describes the stabilization of “patchy” membrane models. Rudolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherer, M., Scheibe, P., Schoenhentz, J. et al. Patterned monomolecular films from polymerizable and fluorinated lipids for the presentation of glycosylated lipids. Colloid Polym Sci 292, 1803–1815 (2014). https://doi.org/10.1007/s00396-014-3237-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3237-5

Keywords

Navigation