Skip to main content
Log in

Lysophosphatidic acid contributes to myocardial ischemia/reperfusion injury by activating TRPV1 in spinal cord

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Lysophosphatidic acid (LPA) is a bioactive phospholipid that plays a crucial role in cardiovascular diseases. Here, we question whether LPA contributes to myocardial ischemia/reperfusion (I/R) injury by acting on transient receptor potential vanilloid 1 (TRPV1) in spinal cord. By ligating the left coronary artery to establish an in vivo I/R mouse model, we observed a 1.57-fold increase in LPA level in the cerebrospinal fluid (CSF). The I/R-elevated CSF LPA levels were reduced by HA130, an LPA synthesis inhibitor, compared to vehicle treatment (4.74 ± 0.34 vs. 6.46 ± 0.94 μg/mL, p = 0.0014). Myocardial infarct size was reduced by HA130 treatment compared to the vehicle group (26 ± 8% vs. 46 ± 8%, p = 0.0001). To block the interaction of LPA with TRPV1 at the K710 site, we generated a K710N knock-in mouse model. The TRPV1K710N mice were resistant to LPA-induced myocardial injury, showing a smaller infarct size relative to TRPV1WT mice (28 ± 4% vs. 60 ± 7%, p < 0.0001). Additionally, a sequence-specific TRPV1 peptide targeting the K710 region produced similar protective effects against LPA-induced myocardial injury. Blocking the K710 region through K710N mutation or TRPV1 peptide resulted in reduced neuropeptides release and decreased activity of cardiac sensory neurons, leading to a decrease in cardiac norepinephrine concentration and the restoration of intramyocardial pro-survival signaling, namely protein kinase B/extracellular regulated kinase/glycogen synthase kinase-3β pathway. These findings suggest that the elevation of CSF LPA is strongly associated with myocardial I/R injury. Moreover, inhibiting the interaction of LPA with TRPV1 by blocking the K710 region uncovers a novel strategy for preventing myocardial ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Albers HM, Dong A, van Meeteren LA, Egan DA, Sunkara M, van Tilburg EW, Schuurman K, van Tellingen O, Morris AJ, Smyth SS, Moolenaar WH, Ovaa H (2010) Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proc Natl Acad Sci U S A 107:7257–7262. https://doi.org/10.1073/pnas.1001529107

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 1781:513–518. https://doi.org/10.1016/j.bbalip.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  3. Arun P, Wilder DM, Morris AJ, Sabbadini R, Long JB (2023) Cerebrospinal fluid levels of lysophosphatidic acids can provide suitable biomarkers of blast-induced traumatic brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2023.0087

    Article  PubMed  Google Scholar 

  4. Bitar L, Uphaus T, Thalman C, Muthuraman M, Gyr L, Ji H, Domingues M, Endle H, Groppa S, Steffen F, Koirala N, Fan W, Ibanez L, Heitsch L, Cruchaga C, Lee JM, Kloss F, Bittner S, Nitsch R, Zipp F, Vogt J (2022) Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Sci Transl Med 14:e0135. https://doi.org/10.1126/scitranslmed.abk0135

    Article  CAS  Google Scholar 

  5. Botker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S, Devaux Y, Di Lisa F, Di Sante M, Efentakis P, Femmino S, Garcia-Dorado D, Giricz Z, Ibanez B, Iliodromitis E, Kaludercic N, Kleinbongard P, Neuhauser M, Ovize M, Pagliaro P, Rahbek-Schmidt M, Ruiz-Meana M, Schluter KD, Schulz R, Skyschally A, Wilder C, Yellon DM, Ferdinandy P, Heusch G (2018) Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection. Basic Res Cardiol 113:39. https://doi.org/10.1007/s00395-018-0696-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cai L, Fan G, Wang F, Liu S, Li T, Cong X, Chun J, Chen X (2017) Protective role for LPA3 in cardiac hypertrophy induced by myocardial infarction but not by isoproterenol. Front Physiol 8:356. https://doi.org/10.3389/fphys.2017.00356

    Article  PubMed  PubMed Central  Google Scholar 

  7. Canul-Sanchez JA, Hernandez-Araiza I, Hernandez-Garcia E, Llorente I, Morales-Lazaro SL, Islas LD, Rosenbaum T (2018) Different agonists induce distinct single-channel conductance states in TRPV1 channels. J Gen Physiol 150:1735–1746. https://doi.org/10.1085/jgp.201812141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castrejon-Tellez V, Del Valle-Mondragon L, Perez-Torres I, Guarner-Lans V, Pastelin-Hernandez G, Ruiz-Ramirez A, Diaz-Juarez JA, Varela-Lopez E, Oidor-Chan VH, Vargas-Gonzalez A, Martinez-Memije R, Flores-Chavez P, Leon-Ruiz B, Arriaga-Carrillo S, Torres-Narvaez JC (2022) TRPV1 contributes to modulate the nitric oxide pathway and oxidative stress in the isolated and perfused rat heart during ischemia and reperfusion. Molecules 27:1031. https://doi.org/10.3390/molecules27031031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen H, Liu S, Liu X, Yang J, Wang F, Cong X, Chen X (2017) Lysophosphatidic acid pretreatment attenuates myocardial ischemia/reperfusion injury in the immature hearts of rats. Front Physiol 8:153. https://doi.org/10.3389/fphys.2017.00153

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen X, Yang XY, Wang ND, Ding C, Yang YJ, You ZJ, Su Q, Chen JH (2003) Serum lysophosphatidic acid concentrations measured by dot immunogold filtration assay in patients with acute myocardial infarction. Scand J Clin Lab Invest 63:497–503. https://doi.org/10.1080/00365510310003265

    Article  CAS  PubMed  Google Scholar 

  11. Cheng XY, Chen C, He SF, Huang CX, Zhang L, Chen ZW, Zhang Y (2019) Spinal NGF induces anti-intrathecal opioid-initiated cardioprotective effect via regulation of TRPV1 expression. Eur J Pharmacol 844:145–155. https://doi.org/10.1016/j.ejphar.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  12. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334. https://doi.org/10.1161/01.cir.98.13.1329

    Article  CAS  PubMed  Google Scholar 

  13. Dohi T, Miyauchi K, Ohkawa R, Nakamura K, Kurano M, Kishimoto T, Yanagisawa N, Ogita M, Miyazaki T, Nishino A, Yaginuma K, Tamura H, Kojima T, Yokoyama K, Kurata T, Shimada K, Daida H, Yatomi Y (2013) Increased lysophosphatidic acid levels in culprit coronary arteries of patients with acute coronary syndrome. Atherosclerosis 229:192–197. https://doi.org/10.1016/j.atherosclerosis.2013.03.038

    Article  CAS  PubMed  Google Scholar 

  14. Dou M, Ma Z, Cheng X, Zou G, Xu Y, Huang C, Xiong W, He S, Zhang Y (2019) Intrathecal lentivirus-mediated RNA interference targeting nerve growth factor attenuates myocardial ischaemia-reperfusion injury in rat. Br J Anaesth 123:439–449. https://doi.org/10.1016/j.bja.2019.06.024

    Article  CAS  PubMed  Google Scholar 

  15. Dull MM, Stengel M, Ries V, Strupf M, Reeh PW, Kremer AE, Namer B (2022) Lysophosphatidic acid activates nociceptors and causes pain or itch depending on the application mode in human skin. Pain 163:445–460. https://doi.org/10.1097/j.pain.0000000000002363

    Article  CAS  PubMed  Google Scholar 

  16. Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH (1993) The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 291(Pt 3):677–680. https://doi.org/10.1042/bj2910677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93:1667–1676. https://doi.org/10.1161/01.cir.93.9.1667

    Article  CAS  PubMed  Google Scholar 

  18. Foreman RD, Garrett KM, Blair RW (2015) Mechanisms of cardiac pain. Compr Physiol 5:929–960. https://doi.org/10.1002/cphy.c140032

    Article  PubMed  Google Scholar 

  19. Gao Y, Song J, Chen H, Cao C, Lee C (2015) TRPV1 activation is involved in the cardioprotection of remote limb ischemic postconditioning in ischemia-reperfusion injury rats. Biochem Biophys Res Commun 463:1034–1039. https://doi.org/10.1016/j.bbrc.2015.06.054

    Article  CAS  PubMed  Google Scholar 

  20. Hausenloy DJ, Botker HE, Ferdinandy P, Heusch G, Ng GA, Redington A, Garcia-Dorado D (2019) Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc Res 115:1167–1177. https://doi.org/10.1093/cvr/cvz053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hausenloy DJ, Yellon DM (2007) Reperfusion injury salvage kinase signalling: taking a RISK for cardioprotection. Heart Fail Rev 12:217–234. https://doi.org/10.1007/s10741-007-9026-1

    Article  CAS  PubMed  Google Scholar 

  22. Hayakawa K, Kurano M, Ohya J, Oichi T, Kano K, Nishikawa M, Uranbileg B, Kuwajima K, Sumitani M, Tanaka S, Aoki J, Yatomi Y, Chikuda H (2019) Lysophosphatidic acids and their substrate lysophospholipids in cerebrospinal fluid as objective biomarkers for evaluating the severity of lumbar spinal stenosis. Sci Rep 9:9144. https://doi.org/10.1038/s41598-019-45742-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. He S, Zambelli VO, Sinharoy P, Brabenec L, Bian Y, Rwere F, Hell RC, Stein Neto B, Hung B, Yu X, Zhao M, Luo Z, Wu C, Xu L, Svensson KJ, McAllister SL, Stary CM, Wagner NM, Zhang Y, Gross ER (2023) A human TRPV1 genetic variant within the channel gating domain regulates pain sensitivity in rodents. J Clin Invest 133:e163735. https://doi.org/10.1172/JCI163735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ (2023) Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 118:49. https://doi.org/10.1007/s00395-023-01019-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. https://doi.org/10.1161/CIRCRESAHA.116.305348

    Article  CAS  PubMed  Google Scholar 

  26. Heusch G (2017) Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc Interv 10:1521–1522. https://doi.org/10.1016/j.jcin.2017.05.063

    Article  PubMed  Google Scholar 

  27. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  28. Howard-Quijano K, Yamaguchi T, Gao F, Kuwabara Y, Puig S, Lundquist E, Salavatian S, Taylor B, Mahajan A (2021) Spinal cord stimulation reduces ventricular arrhythmias by attenuating reactive gliosis and activation of spinal interneurons. JACC Clin Electrophysiol 7:1211–1225. https://doi.org/10.1016/j.jacep.2021.05.016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jiang D, Ju W, Wu X, Zhan X (2018) Elevated lysophosphatidic acid levels in the serum and cerebrospinal fluid in patients with multiple sclerosis: therapeutic response and clinical implication. Neurol Res 40:335–339. https://doi.org/10.1080/01616412.2018.1446256

    Article  CAS  PubMed  Google Scholar 

  30. Juarez-Contreras R, Rosenbaum T, Morales-Lazaro SL (2018) Lysophosphatidic acid and ion channels as molecular mediators of pain. Front Mol Neurosci 11:462. https://doi.org/10.3389/fnmol.2018.00462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kleinbongard P (2023) Perspective: mitochondrial STAT3 in cardioprotection. Basic Res Cardiol 118:32. https://doi.org/10.1007/s00395-023-01003-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kleinbongard P, Skyschally A, Heusch G (2017) Cardioprotection by remote ischemic conditioning and its signal transduction. Pflug Arch Eur J Phy 469:159–181. https://doi.org/10.1007/s00424-016-1922-6

    Article  CAS  Google Scholar 

  33. Lee JW, Lee CS, Ryu YR, Lee J, Son H, Cho HJ, Kim HS (2021) Lysophosphatidic acid receptor 4 is transiently expressed during cardiac differentiation and critical for repair of the damaged heart. Mol Ther 29:1151–1163. https://doi.org/10.1016/j.ymthe.2020.11.004

    Article  CAS  PubMed  Google Scholar 

  34. Lee JW, Lee CS, Son H, Lee J, Kang M, Chai J, Cho HJ, Kim HS (2023) SOX17-mediated LPAR4 expression plays a pivotal role in cardiac development and regeneration after myocardial infarction. Exp Mol Med 55:1424–1436. https://doi.org/10.1038/s12276-023-01025-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112. https://doi.org/10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lieder HR, Kleinbongard P, Skyschally A, Hagelschuer H, Chilian WM, Heusch G (2018) Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ Res 123:1152–1163. https://doi.org/10.1161/CIRCRESAHA.118.313859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Longhurst JC, Tjen ALSC, Fu LW (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes. Ann N Y Acad Sci 940:74–95. https://doi.org/10.1111/j.1749-6632.2001.tb03668.x

    Article  CAS  PubMed  Google Scholar 

  38. Morales-Lazaro SL, Rosenbaum T (2015) A painful link between the TRPV1 channel and lysophosphatidic acid. Life Sci 125:15–24. https://doi.org/10.1016/j.lfs.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  39. Morales-Lazaro SL, Serrano-Flores B, Llorente I, Hernandez-Garcia E, Gonzalez-Ramirez R, Banerjee S, Miller D, Gududuru V, Fells J, Norman D, Tigyi G, Escalante-Alcalde D, Rosenbaum T (2014) Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs. J Biol Chem 289:24079–24090. https://doi.org/10.1074/jbc.M114.572503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Munjuluri S, Wilkerson DA, Sooch G, Chen X, White FA, Obukhov AG (2021) Capsaicin and TRPV1 channels in the cardiovascular system: the role of inflammation. Cells. https://doi.org/10.3390/cells11010018

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nieto-Posadas A, Picazo-Juarez G, Llorente I, Jara-Oseguera A, Morales-Lazaro S, Escalante-Alcalde D, Islas LD, Rosenbaum T (2011) Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site. Nat Chem Biol 8:78–85. https://doi.org/10.1038/nchembio.712

    Article  CAS  PubMed  Google Scholar 

  42. Oude Elferink RP, Bolier R, Beuers UH (2015) Lysophosphatidic acid and signaling in sensory neurons. Biochim Biophys Acta 1851:61–65. https://doi.org/10.1016/j.bbalip.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  43. Pages C, Simon MF, Valet P, Saulnier-Blache JS (2001) Lysophosphatidic acid synthesis and release. Prostag Oth Lipid M 64:1–10. https://doi.org/10.1016/s0090-6980(01)00110-1

    Article  CAS  Google Scholar 

  44. Pan HL, Chen SR (2004) Sensing tissue ischemia: another new function for capsaicin receptors? Circulation 110:1826–1831. https://doi.org/10.1161/01.CIR.0000142618.20278.7A

    Article  PubMed  Google Scholar 

  45. Pei J, Cai L, Wang F, Xu C, Pei S, Guo H, Sun X, Chun J, Cong X, Zhu W, Zheng Z, Chen X (2022) LPA(2) contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res 131:388–403. https://doi.org/10.1161/CIRCRESAHA.122.321036

    Article  CAS  PubMed  Google Scholar 

  46. Poon YY, Chang AY, Ko SF, Chan SH (2011) Catheterization of the thoracic spinal subarachnoid space in mice. J Neurosci Methods 200:36–40. https://doi.org/10.1016/j.jneumeth.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  47. Randhawa PK, Jaggi AS (2017) TRPV1 channels in cardiovascular system: a double edged sword? Int J Cardiol 228:103–113. https://doi.org/10.1016/j.ijcard.2016.11.205

    Article  PubMed  Google Scholar 

  48. Randhawa PK, Jaggi AS (2018) A review on potential involvement of TRPV(1) channels in ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther 23:38–45. https://doi.org/10.1177/1074248417707050

    Article  CAS  PubMed  Google Scholar 

  49. Robertson S, Thomson AL, Carter R, Stott HR, Shaw CA, Hadoke PW, Newby DE, Miller MR, Gray GA (2014) Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and beta1 adrenoreceptors. Part Fibre Toxicol 11:12. https://doi.org/10.1186/1743-8977-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sogut O, Kaya H, Gokdemir MT, Sezen Y (2012) Acute myocardial infarction and coronary vasospasm associated with the ingestion of cayenne pepper pills in a 25-year-old male. Int J Emerg Med 5:5. https://doi.org/10.1186/1865-1380-5-5

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tawa M, Yamamoto S, Ohkita M, Matsumura Y (2012) Endothelin-1 and norepinephrine overflow from cardiac sympathetic nerve endings in myocardial ischemia. Cardiol Res Pract 2012:789071. https://doi.org/10.1155/2012/789071

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tigyi G (2011) Lipids: LPA activates TRPV1–and it hurts. Nat Chem Biol 8:22–23. https://doi.org/10.1038/nchembio.738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tripathi H, Al-Darraji A, Abo-Aly M, Peng H, Shokri E, Chelvarajan L, Renee RD, Levitan BM, Gao E, Hernandez G, Morris AJ, Smyth SS, Abdel-Latif A (2020) Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 149:95–114. https://doi.org/10.1016/j.yjmcc.2020.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Uranbileg B, Ito N, Kurano M, Saigusa D, Saito R, Uruno A, Kano K, Ikeda H, Yamada Y, Sumitani M, Sekiguchi M, Aoki J, Yatomi Y (2019) Alteration of the lysophosphatidic acid and its precursor lysophosphatidylcholine levels in spinal cord stenosis: a study using a rat cauda equina compression model. Sci Rep 9:16578. https://doi.org/10.1038/s41598-019-52999-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Wang DH (2005) TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 112:3617–3623. https://doi.org/10.1161/CIRCULATIONAHA.105.556274

    Article  CAS  PubMed  Google Scholar 

  56. Wu C, Liu R, Luo Z, Sun M, Qile M, Xu S, Jin S, Zhang L, Gross ER, Zhang Y, He S (2022) Spinal cord astrocytes regulate myocardial ischemia-reperfusion injury. Basic Res Cardiol 117:56. https://doi.org/10.1007/s00395-022-00968-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu S, Xu Y, Cheng X, Huang C, Pan Y, Jin S, Xiong W, Zhang L, He S, Zhang Y (2020) Inhibition of DRG-TRPV1 upregulation in myocardial ischemia contributes to exogenous cardioprotection. J Mol Cell Cardiol 138:175–184. https://doi.org/10.1016/j.yjmcc.2019.12.003

    Article  CAS  PubMed  Google Scholar 

  58. Yang C, Yamaki S, Jung T, Kim B, Huyhn R, McKemy DD (2023) Endogenous inflammatory mediators produced by injury activate TRPV1 and TRPA1 nociceptors to induce sexually dimorphic cold pain that is dependent on TRPM8 and GFRalpha3. J Neurosci 43:2803–2814. https://doi.org/10.1523/JNEUROSCI.2303-22.2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang J, Xu J, Han X, Wang H, Zhang Y, Dong J, Deng Y, Wang J (2018) Lysophosphatidic acid is associated with cardiac dysfunction and hypertrophy by suppressing autophagy via the LPA3/AKT/mTOR pathway. Front Physiol 9:1315. https://doi.org/10.3389/fphys.2018.01315

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yellon DM, Beikoghli Kalkhoran S, Davidson SM (2023) The RISK pathway leading to mitochondria and cardioprotection: how everything started. Basic Res Cardiol 118:22. https://doi.org/10.1007/s00395-023-00992-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zahner MR, Li DP, Chen SR, Pan HL (2003) Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats. J Physiol 551:515–523. https://doi.org/10.1113/jphysiol.2003.048207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang D, Zhang Y, Zhao C, Zhang W, Shao G, Zhang H (2016) Effect of lysophosphatidic acid on the immune inflammatory response and the connexin 43 protein in myocardial infarction. Exp Ther Med 11:1617–1624. https://doi.org/10.3892/etm.2016.3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhao Y, Hasse S, Zhao C, Bourgoin SG (2019) Targeting the autotaxin—lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem Pharmacol 164:74–81. https://doi.org/10.1016/j.bcp.2019.03.035

    Article  CAS  PubMed  Google Scholar 

  64. Zhong B, Wang DH (2007) TRPV1 gene knockout impairs preconditioning protection against myocardial injury in isolated perfused hearts in mice. Am J Physiol Heart Circ Physiol 293:H1791–H1798. https://doi.org/10.1152/ajpheart.00169.2007

    Article  CAS  PubMed  Google Scholar 

  65. Zhou Y, Little PJ, Ta HT, Xu S, Kamato D (2019) Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 204:107404. https://doi.org/10.1016/j.pharmthera.2019.107404

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32271194 to SH, 81970231to YZ), Anhui Provincial Natural Science Foundation (2208085MH218 to SH), Key Program of Natural Science Foundation of Higher Education Institutions of Anhui Province (KJ2020A0212 to SH), Program for Excellent Research and Innovation Team of Higher Education Institutions of Anhui Province (2023AH010081 to YZ) and the National Institutes of Health (GM119522 to ERG). The authors thank the Center for Scientific Research of the Second Affiliated Hospital of Anhui Medical University for valuable help in experiments.

Author information

Authors and Affiliations

Authors

Contributions

YZ, SFH and ERG conceived and designed the experiments. CW, MYS, MGQL, YZ, LL, XYC, and XXD performed the experiments and analyzed the data. SFH and CW wrote the manuscript, which was revised by ERG and YZ.

Corresponding authors

Correspondence to Ye Zhang or Shufang He.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

All animal experiments have been approved by the Institutional Animal Care and Use Committee of Anhui Medical University.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1540 KB)

Supplementary file2 (PDF 21775 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Sun, M., Qile, M. et al. Lysophosphatidic acid contributes to myocardial ischemia/reperfusion injury by activating TRPV1 in spinal cord. Basic Res Cardiol 119, 329–348 (2024). https://doi.org/10.1007/s00395-023-01031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-023-01031-z

Keywords

Navigation