Skip to main content
Log in

Protein kinase/phosphatase balance mediates the effects of increased late sodium current on ventricular calcium cycling

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Increased late sodium current (late INa) is an important arrhythmogenic trigger in cardiac disease. It prolongs cardiac action potential and leads to an increased SR Ca2+ leak. This study investigates the contribution of Ca2+/Calmodulin-dependent kinase II (CaMKII), protein kinase A (PKA) and conversely acting protein phosphatases 1 and 2A (PP1, PP2A) to this subcellular crosstalk. Augmentation of late INa (ATX-II) in murine cardiomyocytes led to an increase of diastolic Ca2+ spark frequency and amplitudes of Ca2+ transients but did not affect SR Ca2+ load. Interestingly, inhibition of both, CaMKII and PKA, attenuated the late INa-dependent induction of the SR Ca2+ leak. PKA inhibition additionally reduced the amplitudes of systolic Ca2+ transients. FRET-measurements revealed increased levels of cAMP upon late INa augmentation, which could be prevented by simultaneous inhibition of Na+/Ca2+-exchanger (NCX) suggesting that PKA is activated by Ca2+-dependent cAMP-production. Whereas inhibition of PP2A showed no effect on late INa-dependent alterations of Ca2+ cycling, additional inhibition of PP1 further increased the SR Ca2+ leak. In line with this, selective activation of PP1 yielded a strong reduction of the late INa-induced SR Ca2+ leak and did not affect systolic Ca2+ release. This study indicates that phosphatase/kinase-balance is perturbed upon increased Na+ influx leading to disruption of ventricular Ca2+ cycling via CaMKII- and PKA-dependent pathways. Importantly, an activation of PP1 at RyR2 may represent a promising new toehold to counteract pathologically increased kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amran MS, Homma N, Hashimoto K (2003) Pharmacology of KB-R7943: a Na+ -Ca2+ exchange inhibitor. Cardiovasc Drug Rev 21:255–276

    Article  CAS  PubMed  Google Scholar 

  2. Antzelevitch C, Nesterenko V, Shryock JC, Rajamani S, Song Y, Belardinelli L (2014) The role of late I Na in development of cardiac arrhythmias. Handb Exp Pharmacol 221:137–168. https://doi.org/10.1007/978-3-642-41588-3_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beckendorf J, van den Hoogenhof MMG, Backs J (2018) Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 113:29. https://doi.org/10.1007/s00395-018-0688-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belardinelli L, Giles WR, Rajamani S, Karagueuzian HS, Shryock JC (2015) Cardiac late Na(+) current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm 12:440–448. https://doi.org/10.1016/j.hrthm.2014.11.009

    Article  PubMed  Google Scholar 

  5. Belardinelli L, Shryock JC, Fraser H (2006) Inhibition of the late sodium current as a potential cardioprotective principle: effects of the late sodium current inhibitor ranolazine. Heart 92(Suppl 4):iv6–iv14. https://doi.org/10.1136/hrt.2005.078790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Belevych AE, Ho H-T, Bonilla IM, Terentyeva R, Schober KE, Terentyev D, Carnes CA, Györke S (2017) The role of spatial organization of Ca2+ release sites in the generation of arrhythmogenic diastolic Ca2+ release in myocytes from failing hearts. Basic Res Cardiol 112:44. https://doi.org/10.1007/s00395-017-0633-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borner S, Schwede F, Schlipp A, Berisha F, Calebiro D, Lohse MJ, Nikolaev VO (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438. https://doi.org/10.1038/nprot.2010.198

    Article  CAS  PubMed  Google Scholar 

  8. Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ (2009) Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 7:e1000172. https://doi.org/10.1371/journal.pbio.1000172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chatterjee J, Beullens M, Sukackaite R, Qian J, Lesage B, Hart DJ, Bollen M, Kohn M (2012) Development of a peptide that selectively activates protein phosphatase-1 in living cells. Angew Chem Int Ed Engl 51:10054–10059. https://doi.org/10.1002/anie.201204308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chatterjee J, Köhn M (2013) Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Curr Opin Chem Biol 17:361–368. https://doi.org/10.1016/j.cbpa.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58:453–508. https://doi.org/10.1146/annurev.bi.58.070189.002321

    Article  CAS  PubMed  Google Scholar 

  12. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Computer control of microscopes using microManager. Curr Protoc Mol Biol Chapter 14(Unit14):20. https://doi.org/10.1002/0471142727.mb1420s92

    Article  Google Scholar 

  13. Eleftheriadou O, Boguslavskyi A, Longman MR, Cowan J, Francois A, Heads RJ, Wadzinski BE, Ryan A, Shattock MJ, Snabaitis AK (2017) Expression and regulation of type 2A protein phosphatases and alpha4 signalling in cardiac health and hypertrophy. Basic Res Cardiol 112:37. https://doi.org/10.1007/s00395-017-0625-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fahs S, Lujan P, Kohn M (2016) Approaches to study phosphatases. ACS Chem Biol 11:2944–2961. https://doi.org/10.1021/acschembio.6b00570

    Article  CAS  PubMed  Google Scholar 

  15. Fischer TH, Eiringhaus J, Dybkova N, Forster A, Herting J, Kleinwachter A, Ljubojevic S, Schmitto JD, Streckfuss-Bomeke K, Renner A, Gummert J, Hasenfuss G, Maier LS, Sossalla S (2014) Ca(2+)/calmodulin-dependent protein kinase II equally induces sarcoplasmic reticulum Ca(2+) leak in human ischaemic and dilated cardiomyopathy. Eur J Heart Fail 16:1292–1300. https://doi.org/10.1002/ejhf.163

    Article  CAS  PubMed  Google Scholar 

  16. Fischer TH, Eiringhaus J, Dybkova N, Saadatmand A, Pabel S, Weber S, Wang Y, Kohn M, Tirilomis T, Ljubojevic S, Renner A, Gummert J, Maier LS, Hasenfuss G, El-Armouche A, Sossalla S (2018) Activation of protein phosphatase 1 by a selective phosphatase disrupting peptide reduces sarcoplasmic reticulum Ca(2+) leak in human heart failure. J Heart Fail, Eur. https://doi.org/10.1002/ejhf.1297

    Book  Google Scholar 

  17. Fischer TH, Herting J, Mason FE, Hartmann N, Watanabe S, Nikolaev VO, Sprenger JU, Fan P, Yao L, Popov AF, Danner BC, Schondube F, Belardinelli L, Hasenfuss G, Maier LS, Sossalla S (2015) Late INa increases diastolic SR-Ca2+ -leak in atrial myocardium by activating PKA and CaMKII. Cardiovasc Res 107:184–196. https://doi.org/10.1093/cvr/cvv153

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, Ellenberger D, Forster A, Schmitto JD, Gummert J, Schondube FA, Hasenfuss G, Maier LS, Sossalla S (2013) Ca2+/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation 128:970–981. https://doi.org/10.1161/CIRCULATIONAHA.113.001746

    Article  CAS  PubMed  Google Scholar 

  19. Fish KM, Ladage D, Kawase Y, Karakikes I, Jeong D, Ly H, Ishikawa K, Hadri L, Tilemann L, Muller-Ehmsen J, Samulski RJ, Kranias EG, Hajjar RJ (2013) AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling. Circ Heart Fail 6:310–317. https://doi.org/10.1161/circheartfailure.112.971325

    Article  PubMed  Google Scholar 

  20. Hell JW (2014) CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81:249–265. https://doi.org/10.1016/j.neuron.2013.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Isenberg G, Ravens U (1984) The effects of the Anemonia sulcata toxin (ATX II) on membrane currents of isolated mammalian myocytes. J Physiol 357:127–149. https://doi.org/10.1113/jphysiol.1984.sp015493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(Pt 2):337–347. https://doi.org/10.1113/jphysiol.1996.sp021772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Landstrom AP, Dobrev D, Wehrens XHT (2017) Calcium signaling and cardiac arrhythmias. Circ Res 120:1969–1993. https://doi.org/10.1161/CIRCRESAHA.117.310083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maier LS, Sossalla S (2013) The late Na current as a therapeutic target: where are we? J Mol Cell Cardiol 61:44–50. https://doi.org/10.1016/j.yjmcc.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Maltsev VA, Sabbah HN, Higgins RS, Silverman N, Lesch M, Undrovinas AI (1998) Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation 98:2545–2552. https://doi.org/10.1161/01.CIR.98.23.2545

    Article  CAS  PubMed  Google Scholar 

  26. Maltsev VA, Undrovinas A (2008) Late sodium current in failing heart: friend or foe? Prog Biophys Mol Biol 96:421–451. https://doi.org/10.1016/j.pbiomolbio.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  27. Marks AR (2013) Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest 123:46–52. https://doi.org/10.1172/JCI62834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer-Roxlau S, Lämmle S, Opitz A, Künzel S, Joos JP, Neef S, Sekeres K, Sossalla S, Schöndube F, Alexiou K, Maier LS, Dobrev D, Guan K, Weber S, El-Armouche A (2017) Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation. Basic Res Cardiol 112:43. https://doi.org/10.1007/s00395-017-0635-0

    Article  CAS  PubMed  Google Scholar 

  29. Picht E, Zima AV, Blatter LA, Bers DM (2007) SparkMaster: automated calcium spark analysis with ImageJ. Am J Physiol Cell Physiol 293:C1073–C1081. https://doi.org/10.1152/ajpcell.00586.2006

    Article  CAS  PubMed  Google Scholar 

  30. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS (2001) Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem 276:30623–30630. https://doi.org/10.1074/jbc.M104471200

    Article  CAS  PubMed  Google Scholar 

  31. Ronchi C, Torre E, Rizzetto R, Bernardi J, Rocchetti M, Zaza A (2017) Late sodium current and intracellular ionic homeostasis in acute ischemia. Basic Res Cardiol 112:12. https://doi.org/10.1007/s00395-017-0602-9

    Article  CAS  PubMed  Google Scholar 

  32. Sag CM, Mallwitz A, Wagner S, Hartmann N, Schotola H, Fischer TH, Ungeheuer N, Herting J, Shah AM, Maier LS, Sossalla S, Unsold B (2014) Enhanced late I Na induces proarrhythmogenic SR Ca leak in a CaMKII-dependent manner. J Mol Cell Cardiol 76:94–105. https://doi.org/10.1016/j.yjmcc.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  33. Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L (2013) The arrhythmogenic consequences of increasing late I Na in the cardiomyocyte. Cardiovasc Res 99:600–611. https://doi.org/10.1093/cvr/cvt145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K, Schmitto JD, Seipelt R, Schondube FA, Hasenfuss G, Belardinelli L, Maier LS (2010) Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342. https://doi.org/10.1016/j.jacc.2009.12.055

    Article  CAS  PubMed  Google Scholar 

  35. Sossalla S, Wagner S, Rasenack EC, Ruff H, Weber SL, Schondube FA, Tirilomis T, Tenderich G, Hasenfuss G, Belardinelli L, Maier LS (2008) Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts—role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol 45:32–43. https://doi.org/10.1016/j.yjmcc.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  36. Sprenger JU, Perera RK, Gotz KR, Nikolaev VO (2012) FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors. J Vis Exp 25:e4081. https://doi.org/10.3791/4081

    Article  CAS  Google Scholar 

  37. Toischer K, Hartmann N, Wagner S, Fischer TH, Herting J, Danner BC, Sag CM, Hund TJ, Mohler PJ, Belardinelli L, Hasenfuss G, Maier LS, Sossalla S (2013) Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J Mol Cell Cardiol 61:111–122. https://doi.org/10.1016/j.yjmcc.2013.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ward CA, Bazzazi H, Clark RB, Nygren A, Giles WR (2006) Actions of emigrated neutrophils on Na(+) and K(+) currents in rat ventricular myocytes. Prog Biophys Mol Biol 90:249–269. https://doi.org/10.1016/j.pbiomolbio.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  39. Ward CA, Giles WR (1997) Ionic mechanism of the effects of hydrogen peroxide in rat ventricular myocytes. J Physiol 500(Pt 3):631–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Watanabe S, Ishikawa K, Fish K, Oh JG, Motloch LJ, Kohlbrenner E, Lee P, Xie C, Lee A, Liang L, Kho C, Leonardson L, McIntyre M, Wilson S, Samulski RJ, Kranias EG, Weber T, Akar FG, Hajjar RJ (2017) Protein phosphatase inhibitor-1 gene therapy in a swine model of nonischemic heart failure. J Am Coll Cardiol 70:1744–1756. https://doi.org/10.1016/j.jacc.2017.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the technical assistance of K.-C. Hansing and T. Schulte. THF is funded by the Deutsche Forschungsgemeinschaft (DFG) through the SFB 1002 (A11). SS is supported by the Marga und Walter Boll-Stiftung through a research grant. MK is funded by the European Research Council (ERC) through a starting Grant (# 336567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Fischer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eiringhaus, J., Herting, J., Schatter, F. et al. Protein kinase/phosphatase balance mediates the effects of increased late sodium current on ventricular calcium cycling. Basic Res Cardiol 114, 13 (2019). https://doi.org/10.1007/s00395-019-0720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-019-0720-7

Keywords

Navigation