Skip to main content
Log in

Deleterious acute and chronic effects of bradycardic right ventricular apex pacing: consequences for arrhythmic outcome

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In the chronic complete atrioventricular (AV) block dog (CAVB) model, both bradycardia and altered ventricular activation due to the uncontrolled idioventricular rhythm contribute to ventricular remodeling and the enhanced susceptibility to Torsade de Pointes (TdP) arrhythmias. We investigated the effect of permanent bradycardic right ventricular apex (RVA) pacing on mechanical and electrical remodeling and TdP. In 23 anesthetized dogs, serial experiments were performed at sinus rhythm (SR), acutely after AV block (AAVB) and 3 weeks of remodeling CAVB at a fixed pacing rate of 60/min. ECG, and left (LV) and right ventricular (RV) monophasic action potentials durations (MAPD) were recorded; activation time (AT) and activation recovery interval (ARI) were determined from ten distinct LV electrograms; interventricular mechanical delay (IVMD) and time-to-peak strain (TTP) of the LV septal and lateral wall (ΔTTP: lateral wall minus septal wall) were obtained echocardiographically. Dofetilide (25 μg/kg/5 min) was infused to study TdP inducibility. In baseline AAVB, in comparison to SR, RVA bradypacing acutely increased QT interval, LV, and RVMAPD. Echocardiographic IVMD and ΔTTP were initially increased, which was partially corrected after 3 weeks of RVA pacing (IVMD: 22 ± 13 vs. 42 ± 11 vs. 31 ± 6 ms; ΔTTP: −2 ± 47 vs. −114 ± 38 vs. −36 ± 22 ms). QT interval (362 ± 23 vs. 373 ± 29 ms), LVMAPD (245 ± 18 vs. 253 ± 22 ms), RVMAPD (226 ± 26 vs. 238 ± 31 ms), and mean LV-ARI (268 ± 5 vs. 267 ± 6 ms) were not significantly changed after 3 weeks of RVA pacing. During AAVB, dofetilide increased mean LV-ARI (381 ± 11 ms) with largest increases in the later activated basal areas (slope AT-ARI: +0.96). In contrast with acute RVA pacing, 3 week pacing increased TdP inducibility (0/13 vs. 11/21) and mean LV-ARI (484 ± 18 ms), while the slope of AT-ARI responded differently on dofetilide (−2.37), with larger APD increases in the early region. The latter was supported at the molecular level: reduced RNA expressions of three repolarization-related ion channel genes in early (KCNQ1, KCNH2, and KCNJ2) versus two in late regions (KNCQ1 and KCNJ2). In conclusion, bradycardic RVA pacing acutely induced LV intra- and interventricular mechanical dyssynchrony, which was partially reversed after 3 weeks of pacing (remodeling). The latter occurred without apparent baseline electrical effects. However, dofetilide clearly unmasked (region-specific) arrhythmic consequences of remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aiba T, Tomaselli G (2012) Electrical remodeling in dyssynchrony and resynchronization. J Cardiovasc Transl Res 5:170–179. doi:10.1007/s12265-012-9348-9

    Article  PubMed  Google Scholar 

  2. Akerstrom F, Pachon M, Puchol A, Jimenez-Lopez J, Segovia D, Rodriguez-Padial L, Arias MA (2014) Chronic right ventricular apical pacing: adverse effects and current therapeutic strategies to minimize them. Int J Cardiol 173:351–360. doi:10.1016/j.ijcard.2014.03.079

    Article  PubMed  Google Scholar 

  3. Antzelevitch C (2004) Arrhythmogenic mechanisms of QT prolonging drugs: is QT prolongation really the problem? J Electrocardiol 37(Suppl):15–24

    Article  PubMed  Google Scholar 

  4. Birati EY, Belhassen B, Bardai A, Wilde AA, Viskin S (2011) The site of origin of torsade de pointes. Heart 97:1650–1654. doi:10.1136/hrt.2010.212381

    Article  PubMed  Google Scholar 

  5. Coronel R, de Bakker JM, Wilms-Schopman FJ, Opthof T, Linnenbank AC, Belterman CN, Janse MJ (2006) Monophasic action potentials and activation recovery intervals as measures of ventricular action potential duration: experimental evidence to resolve some controversies. Heart Rhythm 3:1043–1050. doi:10.1016/j.hrthm.2006.05.027

    Article  PubMed  Google Scholar 

  6. Delgado V, Tops LF, Trines SA, Zeppenfeld K, Marsan NA, Bertini M, Holman ER, Schalij MJ, Bax JJ (2009) Acute effects of right ventricular apical pacing on left ventricular synchrony and mechanics. Circ Arrhythm Electrophysiol 2:135–145. doi:10.1161/CIRCEP.108.814608

    Article  PubMed  Google Scholar 

  7. Delhaas T, Arts T, Prinzen FW, Reneman RS (1994) Regional fibre stress-fibre strain area as an estimate of regional blood flow and oxygen demand in the canine heart. J Physiol 477(Pt 3):481–496. doi:10.1113/jphysiol.1994.sp020209

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dunnink A, Stams TRG, Bossu A, Meijborg VMF, Beekman JDM, Wijers SC, De Bakker JMT, Vos MA (2017) Torsade de pointes arrhythmias arise at the site of maximal heterogeneity of repolarization in the chronic complete atrioventricular block dog. Europace 19:858–865. doi:10.1093/europace/euw087

    PubMed  Google Scholar 

  9. Fornwalt BK, Cummings RM, Arita T, Delfino JG, Fyfe DA, Campbell RM, Strieper MJ, Oshinski JN, Frias PA (2008) Acute pacing-induced dyssynchronous activation of the left ventricle creates systolic dyssynchrony with preserved diastolic synchrony. J Cardiovasc Electrophysiol 19:483–488. doi:10.1111/j.1540-8167.2007.01079.x

    Article  PubMed  Google Scholar 

  10. Heusch G (2008) Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 153:1589–1601. doi:10.1038/sj.bjp.0707673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeyaraj D, Wan X, Ficker E, Stelzer JE, Deschenes I, Liu H, Wilson LD, Decker KF, Said TH, Jain MK, Rudy Y, Rosenbaum DS (2013) Ionic bases for electrical remodeling of the canine cardiac ventricle. Am J Physiol Heart Circ Physiol 305:H410–H419. doi:10.1152/ajpheart.00213.2013

    Article  CAS  PubMed  Google Scholar 

  12. Jeyaraj D, Wilson LD, Zhong J, Flask C, Saffitz JE, Deschenes I, Yu X, Rosenbaum DS (2007) Mechanoelectrical feedback as novel mechanism of cardiac electrical remodeling. Circulation 115:3145–3155. doi:10.1161/CIRCULATIONAHA.107.688317

    Article  PubMed  Google Scholar 

  13. Kiehl EL, Makki T, Kumar R, Gumber D, Kwon DH, Rickard JW, Kanj M, Wazni OM, Saliba WI, Varma N, Wilkoff BL, Cantillon DJ (2016) Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm 13:2272–2278. doi:10.1016/j.hrthm.2016.09.027

    Article  PubMed  Google Scholar 

  14. Liu WH, Chen MC, Chen YL, Guo BF, Pan KL, Yang CH, Chang HW (2008) Right ventricular apical pacing acutely impairs left ventricular function and induces mechanical dyssynchrony in patients with sick sinus syndrome: a real-time three-dimensional echocardiographic study. J Am Soc Echocardiogr 21:224–229. doi:10.1016/j.echo.2007.08.045

    Article  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  16. Mills RW, Cornelussen RN, Mulligan LJ, Strik M, Rademakers LM, Skadsberg ND, van Hunnik A, Kuiper M, Lampert A, Delhaas T, Prinzen FW (2009) Left ventricular septal and left ventricular apical pacing chronically maintain cardiac contractile coordination, pump function and efficiency. Circ Arrhythm Electrophysiol 2:571–579. doi:10.1161/CIRCEP.109.882910

    Article  PubMed  Google Scholar 

  17. Mond HG, Proclemer A (2011) The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009—a World Society of Arrhythmia’s project. Pacing Clin Electrophysiol 34:1013–1027. doi:10.1111/j.1540-8159.2011.03150.x

    Article  PubMed  Google Scholar 

  18. Ono S, Nohara R, Kambara H, Okuda K, Kawai C (1992) Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation 85:1125–1131. doi:10.1161/01.CIR.85.3.1125

    Article  CAS  PubMed  Google Scholar 

  19. Oros A, Beekman JD, Vos MA (2008) The canine model with chronic, complete atrio-ventricular block. Pharmacol Ther 119:168–178. doi:10.1016/j.pharmthera.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  20. Prinzen FW, Augustijn CH, Arts T, Allessie MA, Reneman RS (1990) Redistribution of myocardial fiber strain and blood flow by asynchronous activation. Am J Physiol 259:H300–H308

    CAS  PubMed  Google Scholar 

  21. Prinzen FW, Hunter WC, Wyman BT, McVeigh ER (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33:1735–1742. doi:10.1016/S0735-1097(99)00068-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramakers C, Vos MA, Doevendans PA, Schoenmakers M, Wu YS, Scicchitano S, Iodice A, Thomas GP, Antzelevitch C, Dumaine R (2003) Coordinated down-regulation of KCNQ1 and KCNE1 expression contributes to reduction of I(Ks) in canine hypertrophied hearts. Cardiovasc Res 57:486–496

    Article  CAS  PubMed  Google Scholar 

  23. Ruijter JM, Ruiz Villalba A, Hellemans J, Untergasser A, van den Hoff MJ (2015) Removal of between-run variation in a multi-plate qPCR experiment. Biomol Detect Quantif 5:10–14. doi:10.1016/j.bdq.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spragg DD, Akar FG, Helm RH, Tunin RS, Tomaselli GF, Kass DA (2005) Abnormal conduction and repolarization in late-activated myocardium of dyssynchronously contracting hearts. Cardiovasc Res 67:77–86. doi:10.1016/j.cardiores.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  25. Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA, Investigators MOST (2003) Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107:2932–2937. doi:10.1161/01.CIR.0000072769.17295.B1

    Article  PubMed  Google Scholar 

  26. Thambo JB, Bordachar P, Garrigue S, Lafitte S, Sanders P, Reuter S, Girardot R, Crepin D, Reant P, Roudaut R, Jais P, Haissaguerre M, Clementy J, Jimenez M (2004) Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 110:3766–3772. doi:10.1161/01.CIR.0000150336.86033.8D

    Article  PubMed  Google Scholar 

  27. Thomsen MB, Oros A, Schoenmakers M, van Opstal JM, Maas JN, Beekman JD, Vos MA (2007) Proarrhythmic electrical remodelling is associated with increased beat-to-beat variability of repolarisation. Cardiovasc Res 73:521–530. doi:10.1016/j.cardiores.2006.11.025

    Article  CAS  PubMed  Google Scholar 

  28. Tops LF, Schalij MJ, Bax JJ (2009) The effects of right ventricular apical pacing on ventricular function and dyssynchrony implications for therapy. J Am Coll Cardiol 54:764–776. doi:10.1016/j.jacc.2009.06.006

    Article  PubMed  Google Scholar 

  29. van Oosterhout MF, Prinzen FW, Arts T, Schreuder JJ, Vanagt WY, Cleutjens JP, Reneman RS (1998) Asynchronous electrical activation induces asymmetrical hypertrophy of the left ventricular wall. Circulation 98:588–595. doi:10.1161/01.CIR.98.6.588

    Article  PubMed  Google Scholar 

  30. van Opstal JM, Schoenmakers M, Verduyn SC, de Groot SH, Leunissen JD, van Der Hulst FF, Molenschot MM, Wellens HJ, Vos MA (2001) Chronic amiodarone evokes no torsade de pointes arrhythmias despite QT lengthening in an animal model of acquired long-QT syndrome. Circulation 104:2722–2727

    Article  PubMed  Google Scholar 

  31. Vernooy K, Dijkman B, Cheriex EC, Prinzen FW, Crijns HJ (2006) Ventricular remodeling during long-term right ventricular pacing following His bundle ablation. Am J Cardiol 97:1223–1227. doi:10.1016/j.amjcard.2005.11.044

    Article  PubMed  Google Scholar 

  32. Vernooy K, Verbeek XA, Peschar M, Crijns HJ, Arts T, Cornelussen RN, Prinzen FW (2005) Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J 26:91–98. doi:10.1093/eurheartj/ehi008

    Article  PubMed  Google Scholar 

  33. Volders PG, Sipido KR, Vos MA, Spatjens RL, Leunissen JD, Carmeliet E, Wellens HJ (1999) Downregulation of delayed rectifier K(+) currents in dogs with chronic complete atrioventricular block and acquired torsades de pointes. Circulation 100:2455–2461. doi:10.1161/01.CIR.100.24.2455

    Article  CAS  PubMed  Google Scholar 

  34. Vos MA, de Groot SH, Verduyn SC, van der Zande J, Leunissen HD, Cleutjens JP, van Bilsen M, Daemen MJ, Schreuder JJ, Allessie MA, Wellens HJ (1998) Enhanced susceptibility for acquired torsade de pointes arrhythmias in the dog with chronic, complete AV block is related to cardiac hypertrophy and electrical remodeling. Circulation 98:1125–1135. doi:10.1161/01.CIR.98.11.1125

    Article  CAS  PubMed  Google Scholar 

  35. Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, Kutalek SP, Sharma A, Dual C, Investigators VVIIDT (2002) Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the dual chamber and VVI implantable defibrillator (DAVID) trial. JAMA 288:3115–3123. doi:10.1001/jama.288.24.3115

    Article  PubMed  Google Scholar 

  36. Winckels SK, Thomsen MB, Oosterhoff P, Oros A, Beekman JD, Attevelt NJ, Kretzers L, Vos MA (2007) High-septal pacing reduces ventricular electrical remodeling and proarrhythmia in chronic atrioventricular block dogs. J Am Coll Cardiol 50:906–913. doi:10.1016/j.jacc.2007.05.019

    Article  PubMed  Google Scholar 

  37. Zaniboni M, Riva I, Cacciani F, Groppi M (2010) How different two almost identical action potentials can be: a model study on cardiac repolarization. Math Biosci 228:56–70. doi:10.1016/j.mbs.2010.08.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. P. Oosterhoff for the custom-written MATLAB software, Medtronic for providing the pacemakers, St. Jude Medical Netherlands for providing the duo-decapolar catheters, and Mrs. A. Gohar for language editing. This research was performed within the framework of CTMM, the Center for Translational Molecular Medicine (www.ctmm.nl), project COHFAR (Grant No. 01C-203), and supported by the Dutch Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stams, T.R.G., Dunnink, A., van Everdingen, W.M. et al. Deleterious acute and chronic effects of bradycardic right ventricular apex pacing: consequences for arrhythmic outcome. Basic Res Cardiol 112, 46 (2017). https://doi.org/10.1007/s00395-017-0636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-017-0636-z

Keywords

Navigation