Skip to main content

Advertisement

Log in

Cells and extracellular matrix interplay in cardiac valve disease: because age matters

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Cardiovascular aging is a physiological process affecting all components of the heart. Despite the interest and experimental effort lavished on aging of cardiac cells, increasing evidence is pointing at the pivotal role of extracellular matrix (ECM) in cardiac aging. Structural and molecular changes in ECM composition during aging are at the root of significant functional modifications at the level of cardiac valve apparatus. Indeed, calcification or myxomatous degeneration of cardiac valves and their functional impairment can all be explained in light of age-related ECM alterations and the reciprocal interplay between altered ECM and cellular elements populating the leaflet, namely valvular interstitial cells and valvular endothelial cells, is additionally affecting valve function with striking reflexes on the clinical scenario. The initial experimental findings on this argument are underlining the need for a more comprehensive understanding on the biological mechanisms underlying ECM aging and remodeling as potentially constituting a pharmacological therapeutic target or a basis to improve existing prosthetic devices and treatment options. Given the lack of systematic knowledge on this topic, this review will focus on the ECM changes that occur during aging and on their clinical translational relevance and implications in the bedside scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdelbaky A, Corsini E, Figueroa AL, Subramanian S, Fontanez S, Emami H, Hoffmann U, Narula J, Tawakol A (2015) Early aortic valve inflammation precedes calcification: a longitudinal FDG-PET/CT study. Atherosclerosis 238:165–172. doi:10.1016/j.atherosclerosis.2014.11.026

    Article  CAS  PubMed  Google Scholar 

  2. Agmon Y, Khandheria BK, Meissner I, Sicks JR, O’Fallon WM, Wiebers DO, Whisnant JP, Seward JB, Tajik AJ (2001) Aortic valve sclerosis and aortic atherosclerosis: different manifestations of the same disease? Insights from a population-based study. J Am Coll Cardiol 38:827–834. doi:10.1016/s0735-1097(01)01422-x

    Article  CAS  PubMed  Google Scholar 

  3. Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, Fukuda D, Kohler RH, Shi GP, Jaffer FA, Weissleder R (2009) Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119:1785–1794. doi:10.1161/circulationaha.108.827972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386. doi:10.1161/circulationaha.106.654913

    Article  CAS  PubMed  Google Scholar 

  5. Akhtar S, Meek KM, James V (1999) Ultrastructure abnormalities in proteoglycans, collagen fibrils, and elastic fibers in normal and myxomatous mitral valve chordae tendineae. Cardiovasc Pathol 8:191–201 (S1054-8807(99)00004-6)

    Article  CAS  PubMed  Google Scholar 

  6. Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, Cheng SL, Towler DA (2007) Aortic Msx2-Wnt calcification cascade is regulated by TNF-alpha-dependent signals in diabetic Ldlr−/− mice. Arterioscler Thromb Vasc Biol 27:2589–2596. doi:10.1161/atvbaha.107.153668

    Article  CAS  PubMed  Google Scholar 

  7. Alfieri CM, Cheek J, Chakraborty S, Yutzey KE (2010) Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol 338:127–135. doi:10.1016/j.ydbio.2009.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Allison MA, Cheung P, Criqui MH, Langer RD, Wright CM (2006) Mitral and aortic annular calcification are highly associated with systemic calcified atherosclerosis. Circulation 113:861–866. doi:10.1161/circulationaha.105.552844

    Article  PubMed  Google Scholar 

  9. An Y, Wang YT, Ma YT, Wulasihan M, Huang Y, Adi D, Yang YN, Ma X, Li XM, Xie X, Huang D, Liu F, Chen BD (2015) IL-10 genetic polymorphisms were associated with valvular calcification in Han, Uygur and Kazak populations in Xinjiang, China. PLoS One 10:e0128965. doi:10.1371/journal.pone.0128965

    Article  PubMed  PubMed Central  Google Scholar 

  10. Andersen HR, Knudsen LL, Hasenkam JM (1992) Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur Heart J 13:704–708

    CAS  PubMed  Google Scholar 

  11. Andrée B, Bela K, Horvath T, Lux M, Ramm R, Venturini L, Ciubotaru A, Zweigerdt R, Haverich A, Hilfiker A (2014) Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue. Basic Res Cardiol 109:441. doi:10.1007/s00395-014-0441-x

    Article  PubMed  CAS  Google Scholar 

  12. Ann EJ, Kim HY, Choi YH, Kim MY, Mo JS, Jung J, Yoon JH, Kim SM, Moon JS, Seo MS, Hong JA, Jang WG, Shore P, Komori T, Koh JT, Park HS (2011) Inhibition of Notch1 signaling by Runx2 during osteoblast differentiation. J Bone Min Res 26:317–330. doi:10.1002/jbmr.227

    Article  CAS  Google Scholar 

  13. Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95:459–470. doi:10.1161/01.RES.0000141146.95728.da

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Assmann A, Minol JP, Mehdiani A, Akhyari P, Boeken U, Lichtenberg A (2013) Cardiac surgery in nonagenarians: not only feasible, but also reasonable? Interact CardioVasc Thorac Surg 17:340–343. doi:10.1093/icvts/ivt125

    Article  PubMed  PubMed Central  Google Scholar 

  15. Balachandran K, Sucosky P, Jo H, Yoganathan AP (2009) Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol 296:H756–H764. doi:10.1152/ajpheart.00900.2008

    Article  CAS  PubMed  Google Scholar 

  16. Balachandran K, Sucosky P, Jo H, Yoganathan AP (2010) Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol 177:49–57. doi:10.2353/ajpath.2010.090631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Balaoing LR, Post AD, Liu H, Minn KT, Grande-Allen KJ (2014) Age-related changes in aortic valve hemostatic protein regulation. Arterioscler Thromb Vasc Biol 34:72–80. doi:10.1161/ATVBAHA.113.301936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barber JE, Kasper FK, Ratliff NB, Cosgrove DM, Griffin BP, Vesely I (2001) Mechanical properties of myxomatous mitral valves. J Thorac Cardiovasc Surg 122:955–962. doi:10.1067/mtc.2001.117621

    Article  CAS  PubMed  Google Scholar 

  19. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE (1997) Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt–Oram syndrome. Nat Genet 15:30–35. doi:10.1038/ng0197-30

    Article  CAS  PubMed  Google Scholar 

  20. Basta G, Corciu AI, Vianello A, Del Turco S, Foffa I, Navarra T, Chiappino D, Berti S, Mazzone A (2010) Circulating soluble receptor for advanced glycation end-product levels are decreased in patients with calcific aortic valve stenosis. Atherosclerosis 210:614–618. doi:10.1016/j.atherosclerosis.2009.12.029

    Article  CAS  PubMed  Google Scholar 

  21. Beaudoin J, Handschumacher MD, Zeng X, Hung J, Morris EL, Levine RA, Schwammenthal E (2013) Mitral valve enlargement in chronic aortic regurgitation as a compensatory mechanism to prevent functional mitral regurgitation in the dilated left ventricle. J Am Coll Cardiol 61:1809–1816. doi:10.1016/j.jacc.2013.01.064

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bella JN, Tang W, Kraja A, Rao DC, Hunt SC, Miller MB, Palmieri V, Roman MJ, Kitzman DW, Oberman A, Devereux RB, Arnett DK (2007) Genome-wide linkage mapping for valve calcification susceptibility loci in hypertensive sibships: the Hypertension Genetic Epidemiology Network Study. Hypertension 49:453–460. doi:10.1161/01.hyp.0000256957.10242.75

    Article  CAS  PubMed  Google Scholar 

  23. Bezuidenhout D, Oosthuysen A, Human P, Weissenstein C, Zilla P (2009) The effects of cross-link density and chemistry on the calcification potential of diamine-extended glutaraldehyde-fixed bioprosthetic heart-valve materials. Biotechnol Appl Biochem 54:133–140. doi:10.1042/ba20090101

    Article  CAS  PubMed  Google Scholar 

  24. Bosse Y, Mathieu P, Pibarot P (2008) Genomics: the next step to elucidate the etiology of calcific aortic valve stenosis. J Am Coll Cardiol 51:1327–1336. doi:10.1016/j.jacc.2007.12.031

    Article  CAS  PubMed  Google Scholar 

  25. Brodeur MR, Bouvet C, Bouchard S, Moreau S, Leblond J, Deblois D, Moreau P (2014) Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. PLoS One 9:e85922. doi:10.1371/journal.pone.0085922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Broom ND, Thomson FJ (1979) Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis. Thorax 34:166–176. doi:10.1136/thx.34.2.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruel A, Oxlund H (1996) Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127:155–165. doi:10.1016/s0021-9150(96)05947-3

    Article  CAS  PubMed  Google Scholar 

  28. Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG, Seidman CE (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt–Oram syndrome. Dev Biol 211:100–108. doi:10.1006/dbio.1999.9298

    Article  CAS  PubMed  Google Scholar 

  29. Butcher JT, Nerem RM (2006) Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng 12:905–915. doi:10.1089/ten.2006.12.905

    Article  CAS  PubMed  Google Scholar 

  30. Butcher JT, Penrod AM, Garcia AJ, Nerem RM (2004) Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol 24:1429–1434. doi:10.1161/01.ATV.0000130462.50769.5a

    Article  CAS  PubMed  Google Scholar 

  31. Caceres M, Cheng W, De Robertis M, Mirocha JM, Czer L, Esmailian F, Khoynezhad A, Ramzy D, Kass R, Trento A (2013) Survival and quality of life for nonagenarians after cardiac surgery. Ann Thorac Surg 95:1598–1602. doi:10.1016/j.athoracsur.2013.02.034

    Article  PubMed  Google Scholar 

  32. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 47:1707–1712. doi:10.1016/j.jacc.2006.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Camarata T, Krcmery J, Snyder D, Park S, Topczewski J, Simon HG (2010) Pdlim7 (LMP4) regulation of Tbx5 specifies zebrafish heart atrio-ventricular boundary and valve formation. Dev Biol 337:233–245. doi:10.1016/j.ydbio.2009.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cappelli S, Epistolato MC, Vianello A, Mazzone A, Glauber M, Franzini M, Ottaviano V, Pompella A, Paolicchi A, Tanganelli P (2010) Aortic valve disease and gamma-glutamyltransferase: accumulation in tissue and relationships with calcific degeneration. Atherosclerosis 213:385–391. doi:10.1016/j.atherosclerosis.2010.08.063

    Article  CAS  PubMed  Google Scholar 

  35. Castillo JG, Anyanwu AC, El-Eshmawi A, Adams DH (2014) All anterior and bileaflet mitral valve prolapses are repairable in the modern era of reconstructive surgery. Eur J Cardiothorac Surg 45:139–145. doi:10.1093/ejcts/ezt196

    Article  PubMed  Google Scholar 

  36. Chalajour F, Treede H, Ebrahimnejad A, Lauke H, Reichenspurner H, Ergun S (2004) Angiogenic activation of valvular endothelial cells in aortic valve stenosis. Exp Cell Res 298:455–464. doi:10.1016/j.yexcr.2004.04.034

    Article  CAS  PubMed  Google Scholar 

  37. Chan KL, Teo K, Dumesnil JG, Ni A, Tam J, Investigators A (2010) Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 121:306–314. doi:10.1161/CIRCULATIONAHA.109.900027

    Article  CAS  PubMed  Google Scholar 

  38. Chen JH, Simmons CA (2011) Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res 108:1510–1524. doi:10.1161/circresaha.110.234237

    Article  CAS  PubMed  Google Scholar 

  39. Chen JH, Yip CY, Sone ED, Simmons CA (2009) Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol 174:1109–1119. doi:10.2353/ajpath.2009.080750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, Bennett D, Silveira A, Malarstig A, Green FR, Lathrop M, Gigante B, Leander K, de Faire U, Seedorf U, Hamsten A, Collins R, Watkins H, Farrall M (2009) Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med 361:2518–2528. doi:10.1056/NEJMoa0902604

    Article  CAS  PubMed  Google Scholar 

  41. Corrado A, Santoro N, Cantatore FP (2007) Extra-skeletal effects of bisphosphonates. Joint Bone Spine 74:32–38 (S1297-319X(06)00247-8)

    Article  CAS  PubMed  Google Scholar 

  42. Cote N, Mahmut A, Bosse Y, Couture C, Page S, Trahan S, Boulanger MC, Fournier D, Pibarot P, Mathieu P (2013) Inflammation is associated with the remodeling of calcific aortic valve disease. Inflammation 36:573–581. doi:10.1007/s10753-012-9579-6

    Article  CAS  PubMed  Google Scholar 

  43. Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA, Scottish Aortic S, IoRI Lipid Lowering Trial (2005) A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med 352:2389–2397. doi:10.1056/NEJMoa043876

    Article  CAS  PubMed  Google Scholar 

  44. Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106:3006–3008. doi:10.1161/01.cir.0000047200.36165.b8

    Article  PubMed  Google Scholar 

  45. Dainese L, Guarino A, Micheli B, Biagioli V, Polvani G, Maccari F, Volpi N (2013) Aortic valve leaflet glycosaminoglycans composition and modification in severe chronic valve regurgitation. J Heart Valve Dis 22:484–490

    PubMed  Google Scholar 

  46. David Merryman W (2010) Mechano-potential etiologies of aortic valve disease. J Biomech 43:87–92. doi:10.1016/j.jbiomech.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  47. David TE, Armstrong S, Sun Z, Daniel L (1993) Late results of mitral valve repair for mitral regurgitation due to degenerative disease. Ann Thorac Surg 56:7–12. doi:10.1016/0003-4975(93)90396-y (discussion 13–14)

    Article  CAS  PubMed  Google Scholar 

  48. De Vecchis R, Di Biase G, Esposito C, Ciccarelli A, Cioppa C, Giasi A, Ariano C, Cantatrione S (2013) Statin use for nonrheumatic calcific aortic valve stenosis: a review with meta-analysis. J Cardiovasc Med (Hagerstown) 14:559–567. doi:10.2459/JCM.0b013e3283587267

    Article  CAS  Google Scholar 

  49. Decker RS, Dingle JT (1982) Cardiac catabolic factors: the degradation of heart valve intercellular matrix. Science 215:987–989. doi:10.1126/science.6818687

    Article  CAS  PubMed  Google Scholar 

  50. Delanaye P, Krzesinski JM, Warling X, Moonen M, Smelten N, Medart L, Pottel H, Cavalier E (2014) Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol 15:145. doi:10.1186/1471-2369-15-145

    Article  PubMed  PubMed Central  Google Scholar 

  51. Derbali H, Bosse Y, Cote N, Pibarot P, Audet A, Pepin A, Arsenault B, Couture C, Despres JP, Mathieu P (2010) Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via Toll-like receptor 2. Am J Pathol 176:2638–2645. doi:10.2353/ajpath.2010.090541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ducharme V, Guauque-Olarte S, Gaudreault N, Pibarot P, Mathieu P, Bosse Y (2013) NOTCH1 genetic variants in patients with tricuspid calcific aortic valve stenosis. J Heart Valve Dis 22:142–149

    PubMed  Google Scholar 

  53. Dweck MR, Boon NA, Newby DE (2012) Calcific aortic stenosis: a disease of the valve and the myocardium. J Am Coll Cardiol 60:1854–1863. doi:10.1016/j.jacc.2012.02.093

    Article  PubMed  Google Scholar 

  54. Eckert CE, Fan R, Mikulis B, Barron M, Carruthers CA, Friebe VM, Vyavahare NR, Sacks MS (2013) On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater 9:4653–4660. doi:10.1016/j.actbio.2012.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Edep ME, Shirani J, Wolf P, Brown DL (2000) Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc Pathol 9:281–286. doi:10.1016/s1054-8807(00)00043-0

    Article  CAS  PubMed  Google Scholar 

  56. El-Hamamsy I, Balachandran K, Yacoub MH, Stevens LM, Sarathchandra P, Taylor PM, Yoganathan AP, Chester AH (2009) Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. J Am Coll Cardiol 53:1448–1455. doi:10.1016/j.jacc.2008.11.056

    Article  CAS  PubMed  Google Scholar 

  57. El Khoury G, Noirhomme P, Verhelst R, Rubay J, Dion R (2000) Surgical repair of the prolapsing anterior leaflet in degenerative mitral valve disease. J Heart Valve Dis 9:75–80 (discussion 81)

    PubMed  Google Scholar 

  58. Elmariah S, Mohler ER 3rd (2010) The pathogenesis and treatment of the valvulopathy of aortic stenosis: beyond the SEAS. Curr Cardiol Rep 12:125–132. doi:10.1007/s11886-010-0089-6

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eriksen HA, Satta J, Risteli J, Veijola M, Vare P, Soini Y (2006) Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis 189:91–98. doi:10.1016/j.atherosclerosis.2005.11.034

    Article  CAS  PubMed  Google Scholar 

  60. Farrar EJ, Huntley GD, Butcher J (2015) Endothelial-derived oxidative stress drives myofibroblastic activation and calcification of the aortic valve. PLoS One 10:e0123257. doi:10.1371/journal.pone.0123257

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fernandez-Pisonero I, Lopez J, Onecha E, Duenas AI, Maeso P, Crespo MS, Roman JA, Garcia-Rodriguez C (2014) Synergy between sphingosine 1-phosphate and lipopolysaccharide signaling promotes an inflammatory, angiogenic and osteogenic response in human aortic valve interstitial cells. PLoS One 9:e109081. doi:10.1371/journal.pone.0109081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Filsoufi F, Carpentier A (2007) Principles of reconstructive surgery in degenerative mitral valve disease. Semin Thorac Cardiovasc Surg 19:103–110. doi:10.1053/j.semtcvs.2007.04.003

    Article  PubMed  Google Scholar 

  63. Fondard O, Detaint D, Iung B, Choqueux C, Adle-Biassette H, Jarraya M, Hvass U, Couetil JP, Henin D, Michel JB, Vahanian A, Jacob MP (2005) Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 26:1333–1341. doi:10.1093/eurheartj/ehi248

    Article  CAS  PubMed  Google Scholar 

  64. Fornes P, Heudes D, Fuzellier JF, Tixier D, Bruneval P, Carpentier A (1999) Correlation between clinical and histologic patterns of degenerative mitral valve insufficiency: a histomorphometric study of 130 excised segments. Cardiovasc Pathol 8:81–92 (S1054880798000210)

    Article  CAS  PubMed  Google Scholar 

  65. Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111:3316–3326. doi:10.1161/circulationaha.104.486738

    Article  PubMed  Google Scholar 

  66. Gaudreault N, Ducharme V, Lamontagne M, Guauque-Olarte S, Mathieu P, Pibarot P, Bosse Y (2011) Replication of genetic association studies in aortic stenosis in adults. Am J Cardiol 108:1305–1310. doi:10.1016/j.amjcard.2011.06.050

    Article  CAS  PubMed  Google Scholar 

  67. Ghazvini-Boroujerdi M, Clark J, Narula N, Palmatory E, Connolly JM, DeFelice S, Xu J, Jian B, Hazelwood S, Levy RJ (2004) Transcription factor Egr-1 in calcific aortic valve disease. J Heart Valve Dis 13:894–903

    PubMed  Google Scholar 

  68. Gould RA, Sinha R, Aziz H, Rouf R, Dietz HC 3rd, Judge DP, Butcher J (2012) Multi-scale biomechanical remodeling in aging and genetic mutant murine mitral valve leaflets: insights into Marfan syndrome. PLoS One 7:e44639. doi:10.1371/journal.pone.0044639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grande-Allen KJ, Calabro A, Gupta V, Wight TN, Hascall VC, Vesely I (2004) Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: association with regions of tensile and compressive loading. Glycobiology 14:621–633. doi:10.1093/glycob/cwh076

    Article  CAS  PubMed  Google Scholar 

  70. Gupta V, Tseng H, Lawrence BD, Grande-Allen KJ (2009) Effect of cyclic mechanical strain on glycosaminoglycan and proteoglycan synthesis by heart valve cells. Acta Biomater 5:531–540. doi:10.1016/j.actbio.2008.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hanada K, Vermeij M, Garinis GA, de Waard MC, Kunen MG, Myers L, Maas A, Duncker DJ, Meijers C, Dietz HC, Kanaar R, Essers J (2007) Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circ Res 100:738–746. doi:10.1161/01.RES.0000260181.19449.95

    Article  CAS  PubMed  Google Scholar 

  72. Helske S, Syvaranta S, Kupari M, Lappalainen J, Laine M, Lommi J, Turto H, Mayranpaa M, Werkkala K, Kovanen PT, Lindstedt KA (2006) Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur Heart J 27:1495–1504. doi:10.1093/eurheartj/ehi706

    Article  CAS  PubMed  Google Scholar 

  73. Helske S, Syvaranta S, Lindstedt KA, Lappalainen J, Oorni K, Mayranpaa MI, Lommi J, Turto H, Werkkala K, Kupari M, Kovanen PT (2006) Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler Thromb Vasc Biol 26:1791–1798. doi:10.1161/01.atv.0000228824.01604.63

    Article  CAS  PubMed  Google Scholar 

  74. Hermans H, Herijgers P, Holvoet P, Verbeken E, Meuris B, Flameng W, Herregods MC (2010) Statins for calcific aortic valve stenosis: into oblivion after SALTIRE and SEAS? An extensive review from bench to bedside. Curr Probl Cardiol 35:284–306. doi:10.1016/j.cpcardiol.2010.02.002

    Article  PubMed  Google Scholar 

  75. Hinton RB Jr, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, Yutzey KE (2006) Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res 98:1431–1438. doi:10.1161/01.RES.0000224114.65109.4e

    Article  CAS  PubMed  Google Scholar 

  76. Hirsch D, Azoury R, Sarig S, Kruth HS (1993) Colocalization of cholesterol and hydroxyapatite in human atherosclerotic lesions. Calcif Tissue Int 52:94–98. doi:10.1007/bf00308315

    Article  CAS  PubMed  Google Scholar 

  77. Hofmann B, Yakobus Y, Indrasari M, Nass N, Santos AN, Kraus FB, Silber RE, Simm A (2014) RAGE influences the development of aortic valve stenosis in mice on a high fat diet. Exp Gerontol 59:13–20. doi:10.1016/j.exger.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  78. Holden RM, Sanfilippo AS, Hopman WM, Zimmerman D, Garland JS, Morton AR (2007) Warfarin and aortic valve calcification in hemodialysis patients. J Nephrol 20:417–422

    CAS  PubMed  Google Scholar 

  79. Horne BD, Camp NJ, Muhlestein JB, Cannon-Albright LA (2004) Evidence for a heritable component in death resulting from aortic and mitral valve diseases. Circulation 110:3143–3148. doi:10.1161/01.cir.0000147189.85636.c3

    Article  PubMed  Google Scholar 

  80. Jian B, Jones PL, Li Q, Mohler ER 3rd, Schoen FJ, Levy RJ (2001) Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol 159:321–327. doi:10.1016/S0002-9440(10)61698-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jian B, Narula N, Li QY, Mohler ER 3rd, Levy RJ (2003) Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg 75:457–465. doi:10.1016/s0003-4975(02)04312-6 (discussion 465–456)

    Article  PubMed  Google Scholar 

  82. Jiang L, Zhang J, Monticone RE, Telljohann R, Wu J, Wang M, Lakatta EG (2012) Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension 60:1192–1199. doi:10.1161/HYPERTENSIONAHA.112.196840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaden JJ, Bickelhaupt S, Grobholz R, Haase KK, Sarikoc A, Kilic R, Brueckmann M, Lang S, Zahn I, Vahl C, Hagl S, Dempfle CE, Borggrefe M (2004) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol 36:57–66 (S0022282803002967)

    Article  CAS  PubMed  Google Scholar 

  84. Kaden JJ, Bickelhaupt S, Grobholz R, Vahl CF, Hagl S, Brueckmann M, Haase KK, Dempfle CE, Borggrefe M (2004) Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis 13:560–566

    PubMed  Google Scholar 

  85. Kaden JJ, Dempfle CE, Grobholz R, Fischer CS, Vocke DC, Kilic R, Sarikoc A, Pinol R, Hagl S, Lang S, Brueckmann M, Borggrefe M (2005) Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc Pathol 14:80–87. doi:10.1016/j.carpath.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  86. Kaden JJ, Dempfle CE, Grobholz R, Tran HT, Kilic R, Sarikoc A, Brueckmann M, Vahl C, Hagl S, Haase KK, Borggrefe M (2003) Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis 170:205–211. doi:10.1016/s0021-9150(03)00284-3

    Article  CAS  PubMed  Google Scholar 

  87. Kaden JJ, Kilic R, Sarikoc A, Hagl S, Lang S, Hoffmann U, Brueckmann M, Borggrefe M (2005) Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med 16:869–872. doi:10.3892/ijmm.16.5.869

    CAS  PubMed  Google Scholar 

  88. Kaden JJ, Vocke DC, Fischer CS, Grobholz R, Brueckmann M, Vahl CF, Hagl S, Haase KK, Dempfle CE, Borggrefe M (2004) Expression and activity of matrix metalloproteinase-2 in calcific aortic stenosis. Z Kardiol 93:124–130. doi:10.1007/s00392-004-1021-0

    Article  CAS  PubMed  Google Scholar 

  89. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG (2009) Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA 301:2331–2339. doi:10.1001/jama.2009.801

    Article  CAS  PubMed  Google Scholar 

  90. Kasyanov V, Moreno-Rodriguez RA, Kalejs M, Ozolanta I, Stradins P, Wen X, Yao H, Mironov V (2013) Age-related analysis of structural, biochemical and mechanical properties of the porcine mitral heart valve leaflets. Connect Tissue Res 54:394–402. doi:10.3109/03008207.2013.823954

    Article  PubMed  Google Scholar 

  91. Krane SM, Byrne MH, Lemaitre V, Henriet P, Jeffrey JJ, Witter JP, Liu X, Wu H, Jaenisch R, Eeckhout Y (1996) Different collagenase gene products have different roles in degradation of type I collagen. J Biol Chem 271:28509–28515. doi:10.1074/jbc.271.45.28509

    Article  CAS  PubMed  Google Scholar 

  92. Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC (1993) Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis 2:236–244

    CAS  PubMed  Google Scholar 

  93. Kupari M, Laine M, Turto H, Lommi J, Werkkala K (2013) Circulating collagen metabolites, myocardial fibrosis and heart failure in aortic valve stenosis. J Heart Valve Dis 22:166–176

    PubMed  Google Scholar 

  94. LaHaye S, Lincoln J, Garg V (2014) Genetics of valvular heart disease. Curr Cardiol Rep 16:487. doi:10.1007/s11886-014-0487-2

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107:490–497. doi:10.1161/01.cir.0000048894.99865.02

    Article  PubMed  Google Scholar 

  96. Latif N, Sarathchandra P, Taylor PM, Antoniw J, Yacoub MH (2005) Localization and pattern of expression of extracellular matrix components in human heart valves. J Heart Valve Dis 14:218–227

    PubMed  Google Scholar 

  97. Lee JH, Meng X, Weyant MJ, Reece TB, Cleveland JC Jr, Fullerton DA (2011) Stenotic aortic valves have dysfunctional mechanisms of anti-inflammation: implications for aortic stenosis. J Thorac Cardiovasc Surg 141:481–486. doi:10.1016/j.jtcvs.2010.11.002

    Article  PubMed  Google Scholar 

  98. Lee TC, Midura RJ, Hascall VC, Vesely I (2001) The effect of elastin damage on the mechanics of the aortic valve. J Biomech 34:203–210. doi:10.1016/s0021-9290(00)00187-1

    Article  CAS  PubMed  Google Scholar 

  99. Li C, Xu S, Gotlieb AI (2013) The progression of calcific aortic valve disease through injury, cell dysfunction, and disruptive biologic and physical force feedback loops. Cardiovasc Pathol 22:1–8. doi:10.1016/j.carpath.2012.06.005

    Article  PubMed  Google Scholar 

  100. Li F, Cai Z, Chen F, Shi X, Zhang Q, Chen S, Shi J, Wang DW, Dong N (2012) Pioglitazone attenuates progression of aortic valve calcification via down-regulating receptor for advanced glycation end products. Basic Res Cardiol 107:306. doi:10.1007/s00395-012-0306-0

    Article  PubMed  CAS  Google Scholar 

  101. Lin SL, Liu CP, Young ST, Lin M, Chiou CW (2005) Age-related changes in aortic valve with emphasis on the relation between pressure loading and thickened leaflets of the aortic valves. Int J Cardiol 103:272–279. doi:10.1016/j.ijcard.2004.08.079

    Article  PubMed  Google Scholar 

  102. Litmathe J, Feindt P, Kurt M, Gams E, Boeken U (2011) Aortic valve replacement in octogenarians: outcome and predictors of complications. Hellenic J Cardiol 52:211–215

    PubMed  Google Scholar 

  103. Mackie EJ, Murphy LI (1998) The role of tenascin-C and related glycoproteins in early chondrogenesis. Microsc Res Tech 43:102–110. doi:10.1002/(sici)1097-0029(19981015)43:2<102:aid-jemt3>3.3.co;2-k

    Article  CAS  PubMed  Google Scholar 

  104. Mahler GJ, Butcher JT (2011) Inflammatory regulation of valvular remodeling: the good(?), the bad, and the ugly. Int J Inflamm 2011:721419. doi:10.4061/2011/721419

    Article  CAS  Google Scholar 

  105. Mathieu P, Voisine P, Pepin A, Shetty R, Savard N, Dagenais F (2005) Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. J Heart Valve Dis 14:353–357

    PubMed  Google Scholar 

  106. McDonald PC, Wilson JE, McNeill S, Gao M, Spinelli JJ, Rosenberg F, Wiebe H, McManus BM (2002) The challenge of defining normality for human mitral and aortic valves: geometrical and compositional analysis. Cardiovasc Pathol 11:193–209 (S1054880701001028)

    Article  PubMed  Google Scholar 

  107. Merryman WD, Youn I, Lukoff HD, Krueger PM, Guilak F, Hopkins RA, Sacks MS (2006) Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am J Physiol Heart Circ Physiol 290:H224–H231. doi:10.1152/ajpheart.00521.2005

    Article  CAS  PubMed  Google Scholar 

  108. Midwood KS, Valenick LV, Hsia HC, Schwarzbauer JE (2004) Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4. Mol Biol Cell 15:5670–5677. doi:10.1091/mbc.E04-08-0759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Miller JD, Weiss RM, Heistad DD (2011) Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res 108:1392–1412. doi:10.1161/circresaha.110.234138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mohler ER 3rd (2000) Are atherosclerotic processes involved in aortic-valve calcification? Lancet 356:524–525. doi:10.1016/s0140-6736(00)02572-1

    Article  PubMed  Google Scholar 

  111. Mohler ER 3rd, Adam LP, McClelland P, Graham L, Hathaway DR (1997) Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol 17:547–552. doi:10.1161/01.atv.17.3.547

    Article  PubMed  Google Scholar 

  112. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528. doi:10.1161/01.cir.103.11.1522

    Article  PubMed  Google Scholar 

  113. Monzack EL, Masters KS (2011) Can valvular interstitial cells become true osteoblasts? A side-by-side comparison. J Heart Valve Dis 20:449–463

    PubMed  PubMed Central  Google Scholar 

  114. Nenna A, Nappi F, Avtaar Singh SS, Sutherland FW, Di Domenico F, Chello M, Spadaccio C (2015) Pharmacologic approaches against advanced glycation end products (AGEs) in diabetic cardiovascular disease. Res Cardiovasc Med 4:e26949. doi:10.5812/cardiovascmed.4(2)2015.26949

    Article  PubMed  PubMed Central  Google Scholar 

  115. New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, Libby P, Shanahan CM, Croce K, Aikawa E (2013) Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res 113:72–77. doi:10.1161/circresaha.113.301036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M (2006) Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011. doi:10.1016/S0140-6736(06)69208-8

    Article  PubMed  Google Scholar 

  117. Nozynski J, Zakliczynski M, Konecka-Mrowka D, Zakliczynska H, Pijet M, Zembala-Nozynska E, Lange D, Zembala M (2013) Advanced glycation end products and lipofuscin deposits share the same location in cardiocytes of the failing heart. Exp Gerontol 48:223–228. doi:10.1016/j.exger.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  118. O’Brien KD (2006) Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol 26:1721–1728. doi:10.1161/01.ATV.0000227513.13697.ac

    Article  PubMed  CAS  Google Scholar 

  119. O’Brien KD, Shavelle DM, Caulfield MT, McDonald TO, Olin-Lewis K, Otto CM, Probstfield JL (2002) Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation 106:2224–2230. doi:10.1161/01.cir.0000035655.45453.d2

    Article  PubMed  Google Scholar 

  120. Olsson M, Dalsgaard CJ, Haegerstrand A, Rosenqvist M, Ryden L, Nilsson J (1994) Accumulation of T lymphocytes and expression of interleukin-2 receptors in nonrheumatic stenotic aortic valves. J Am Coll Cardiol 23:1162–1170. doi:10.1016/0735-1097(94)90606-8

    Article  CAS  PubMed  Google Scholar 

  121. Olsson M, Thyberg J, Nilsson J (1999) Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler Thromb Vasc Biol 19:1218–1222. doi:10.1161/01.atv.19.5.1218

    Article  CAS  PubMed  Google Scholar 

  122. Oosthuysen A, Zilla PP, Human PA, Schmidt CA, Bezuidenhout D (2006) Bioprosthetic tissue preservation by filling with a poly(acrylamide) hydrogel. Biomaterials 27:2123–2130. doi:10.1016/j.biomaterials.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  123. Ortlepp JR, Schmitz F, Mevissen V, Weiss S, Huster J, Dronskowski R, Langebartels G, Autschbach R, Zerres K, Weber C, Hanrath P, Hoffmann R (2004) The amount of calcium-deficient hexagonal hydroxyapatite in aortic valves is influenced by gender and associated with genetic polymorphisms in patients with severe calcific aortic stenosis. Eur Heart J 25:514–522. doi:10.1016/j.ehj.2003.09.006

    Article  CAS  PubMed  Google Scholar 

  124. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD (1994) Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histol immunohistochemical studies. Circulation 90:844–853. doi:10.1161/01.cir.90.2.844

    Article  CAS  PubMed  Google Scholar 

  125. Pacifici R, Carano A, Santoro SA, Rifas L, Jeffrey JJ, Malone JD, McCracken R, Avioli LV (1991) Bone matrix constituents stimulate interleukin-1 release from human blood mononuclear cells. J Clin Invest 87:221–228. doi:10.1172/jci114975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, Berliner JA, Demer LL (1997) Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler Thromb Vasc Biol 17:680–687. doi:10.1161/01.atv.17.4.680

    Article  CAS  PubMed  Google Scholar 

  127. Passmore M, Nataatmadja M, Fung YL, Pearse B, Gabriel S, Tesar P, Fraser JF (2015) Osteopontin alters endothelial and valvular interstitial cell behaviour in calcific aortic valve stenosis through HMGB1 regulation. Eur J Cardiothorac Surg 48:e20–e29. doi:10.1093/ejcts/ezv244

    Article  PubMed  Google Scholar 

  128. Patel V, Carrion K, Hollands A, Hinton A, Gallegos T, Dyo J, Sasik R, Leire E, Hardiman G, Mohamed SA, Nigam S, King CC, Nizet V, Nigam V (2015) The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-kappaB signaling, and inflammatory gene expression in human aortic valve cells. FASEB J 29:1859–1868. doi:10.1096/fj.14-257808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Perrotta I, Moraca FM, Sciangula A, Aquila S, Mazzulla S (2015) HIF-1alpha and VEGF: immunohistochemical profile and possible function in human aortic valve stenosis. Ultrastruct Pathol 39:198–206. doi:10.3109/01913123.2014.991884

    Article  PubMed  Google Scholar 

  130. Poggio P, Grau JB, Field BC, Sainger R, Seefried WF, Rizzolio F, Ferrari G (2011) Osteopontin controls endothelial cell migration in vitro and in excised human valvular tissue from patients with calcific aortic stenosis and controls. J Cell Physiol 226:2139–2149. doi:10.1002/jcp.22549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pohle K, Maffert R, Ropers D, Moshage W, Stilianakis N, Daniel WG, Achenbach S (2001) Progression of aortic valve calcification: association with coronary atherosclerosis and cardiovascular risk factors. Circulation 104:1927–1932. doi:10.1161/hc4101.097527

    Article  CAS  PubMed  Google Scholar 

  132. Price PA, Faus SA, Williamson MK (2001) Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arterioscler Thromb Vasc Biol 21:817–824. doi:10.1161/01.atv.21.5.817

    Article  CAS  PubMed  Google Scholar 

  133. Probst V, Le Scouarnec S, Legendre A, Jousseaume V, Jaafar P, Nguyen JM, Chaventre A, Le Marec H, Schott JJ (2006) Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation 113:856–860. doi:10.1161/circulationaha.105.569467

    Article  PubMed  Google Scholar 

  134. Qin X, Corriere MA, Matrisian LM, Guzman RJ (2006) Matrix metalloproteinase inhibition attenuates aortic calcification. Arterioscler Thromb Vasc Biol 26:1510–1516. doi:10.1161/01.ATV.0000225807.76419.a7

    Article  CAS  PubMed  Google Scholar 

  135. Qiu H, Depre C, Ghosh K, Resuello RG, Natividad FF, Rossi F, Peppas A, Shen YT, Vatner DE, Vatner SF (2007) Mechanism of gender-specific differences in aortic stiffness with aging in nonhuman primates. Circulation 116:669–676. doi:10.1161/CIRCULATIONAHA.107.689208

    Article  PubMed  Google Scholar 

  136. Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ (2004) Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis 13:841–847

    PubMed  Google Scholar 

  137. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532. doi:10.1161/hc4601.099489

    Article  CAS  PubMed  Google Scholar 

  138. Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184. doi:10.1161/01.cir.0000070591.21548.69

    Article  PubMed  PubMed Central  Google Scholar 

  139. Rapoport HS, Connolly JM, Fulmer J, Dai N, Murti BH, Gorman RC, Gorman JH, Alferiev I, Levy RJ (2007) Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials 28:690–699. doi:10.1016/j.biomaterials.2006.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reamon-Buettner SM, Borlak J (2010) NKX2-5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum Mutat 31:1185–1194. doi:10.1002/humu.21345

    Article  CAS  PubMed  Google Scholar 

  141. Reddy GK (2004) AGE-related cross-linking of collagen is associated with aortic wall matrix stiffness in the pathogenesis of drug-induced diabetes in rats. Microvasc Res 68:132–142. doi:10.1016/j.mvr.2004.04.002

    Article  PubMed  CAS  Google Scholar 

  142. Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gerdts E, Gohlke-Barwolf C, Holme I, Kesaniemi YA, Malbecq W, Nienaber CA, Ray S, Skjaerpe T, Wachtell K, Willenheimer R, Investigators S (2008) Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med 359:1343–1356. doi:10.1056/NEJMoa0804602

    Article  PubMed  Google Scholar 

  143. Russmann S, Gohlke-Barwolf C, Jahnchen E, Trenk D, Roskamm H (1997) Age-dependent differences in the anticoagulant effect of phenprocoumon in patients after heart valve surgery. Eur J Clin Pharmacol 52:31–35. doi:10.1007/s002280050245

    Article  CAS  PubMed  Google Scholar 

  144. Santarpino G, Pfeiffer S, Fischlein T (2012) First-in-man implantation of a Sorin Memo 3D ring: mitral annular flexibility is still preserved at 5 years of follow-up! Int J Cardiol 159:e23–e24. doi:10.1016/j.ijcard.2011.11.072

    Article  PubMed  Google Scholar 

  145. Sarasa-Renedo A, Tunc-Civelek V, Chiquet M (2006) Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp Cell Res 312:1361–1370. doi:10.1016/j.yexcr.2005.12.025

    Article  CAS  PubMed  Google Scholar 

  146. Satta J, Melkko J, Pollanen R, Tuukkanen J, Paakko P, Ohtonen P, Mennander A, Soini Y (2002) Progression of human aortic valve stenosis is associated with tenascin-C expression. J Am Coll Cardiol 39:96–101. doi:10.1016/s0735-1097(01)01705-3

    Article  CAS  PubMed  Google Scholar 

  147. Satta J, Oiva J, Salo T, Eriksen H, Ohtonen P, Biancari F, Juvonen TS, Soini Y (2003) Evidence for an altered balance between matrix metalloproteinase-9 and its inhibitors in calcific aortic stenosis. Ann Thorac Surg 76:681–688. doi:10.1016/s0003-4975(03)00529-0 (discussion 688)

    Article  PubMed  Google Scholar 

  148. Schoen FJ (1997) Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J Heart Valve Dis 6:1–6

    CAS  PubMed  Google Scholar 

  149. Schoen FJ, Levy RJ (1999) Founder’s Award, 25th Annual Meeting of the Society for Biomaterials, perspectives. Providence, RI, April 28–May 2, 1999. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47:439–465. doi:10.1002/(sici)1097-4636(19991215)47:4<439:aid-jbm1>3.3.co;2-f

    Article  CAS  PubMed  Google Scholar 

  150. Seya K, Yu Z, Kanemaru K, Daitoku K, Akemoto Y, Shibuya H, Fukuda I, Okumura K, Motomura S, Furukawa K (2011) Contribution of bone morphogenetic protein-2 to aortic valve calcification in aged rat. J Pharmacol Sci 115:8–14. doi:10.1254/jphs.10198fp

    Article  CAS  PubMed  Google Scholar 

  151. Silver FH, Horvath I, Foran DJ (2002) Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen. J Theor Biol 216:243–254. doi:10.1006/jtbi.2002.2542

    Article  CAS  PubMed  Google Scholar 

  152. Simmons CA (2009) Aortic valve mechanics: an emerging role for the endothelium. J Am Coll Cardiol 53:1456–1458. doi:10.1016/j.jacc.2008.12.052

    Article  PubMed  Google Scholar 

  153. Smith JG, Luk K, Schulz CA, Engert JC, Do R, Hindy G, Rukh G, Dufresne L, Almgren P, Owens DS, Harris TB, Peloso GM, Kerr KF, Wong Q, Smith AV, Budoff MJ, Rotter JI, Cupples LA, Rich S, Kathiresan S, Orho-Melander M, Gudnason V, O’Donnell CJ, Post WS, Thanassoulis G (2014) Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA 312:1764–1771. doi:10.1001/jama.2014.13959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Smith KE, Metzler SA, Warnock JN (2010) Cyclic strain inhibits acute pro-inflammatory gene expression in aortic valve interstitial cells. Biomech Model Mechanobiol 9:117–125. doi:10.1007/s10237-009-0165-2

    Article  PubMed  Google Scholar 

  155. Soini Y, Salo T, Satta J (2003) Angiogenesis is involved in the pathogenesis of nonrheumatic aortic valve stenosis. Hum Pathol 34:756–763. doi:10.1016/s0046-8177(03)00245-4

    Article  CAS  PubMed  Google Scholar 

  156. Soini Y, Satta J, Maatta M, Autio-Harmainen H (2001) Expression of MMP2, MMP9, MT1-MMP, TIMP1, and TIMP2 mRNA in valvular lesions of the heart. J Pathol 194:225–231. doi:10.1002/path.850

    Article  CAS  PubMed  Google Scholar 

  157. Spadaccio C, Gutermann H, Dion R (2014) Mitral valvuloplasty: when the art of repair meets the biological science. J Heart Valve Dis 23:299–301

    PubMed  Google Scholar 

  158. Stephens EH, Chu CK, Grande-Allen KJ (2008) Valve proteoglycan content and glycosaminoglycan fine structure are unique to microstructure, mechanical load and age: relevance to an age-specific tissue-engineered heart valve. Acta Biomater 4:1148–1160. doi:10.1016/j.actbio.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  159. Stephens EH, de Jonge N, McNeill MP, Durst CA, Grande-Allen KJ (2010) Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng Part A 16:867–878. doi:10.1089/ten.TEA.2009.0288

    Article  PubMed  Google Scholar 

  160. Stephens EH, Durst CA, West JL, Grande-Allen KJ (2011) Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region. Acta Biomater 7:75–82. doi:10.1016/j.actbio.2010.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stephens EH, Grande-Allen KJ (2007) Age-related changes in collagen synthesis and turnover in porcine heart valves. J Heart Valve Dis 16:672–682

    PubMed  Google Scholar 

  162. Stephens EH, Saltarrelli JG, Baggett LS, Nandi I, Kuo JJ, Davis AR, Olmsted-Davis EA, Reardon MJ, Morrisett JD, Grande-Allen KJ (2011) Differential proteoglycan and hyaluronan distribution in calcified aortic valves. Cardiovasc Pathol 20:334–342. doi:10.1016/j.carpath.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM (1997) Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol 29:630–634

    Article  CAS  PubMed  Google Scholar 

  164. Sucosky P, Balachandran K, Elhammali A, Jo H, Yoganathan AP (2009) Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol 29:254–260. doi:10.1161/atvbaha.108.176347

    Article  CAS  PubMed  Google Scholar 

  165. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102:576–583. doi:10.1172/JCI181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sun L, Rajamannan NM, Sucosky P (2013) Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS One 8:e84433. doi:10.1371/journal.pone.0084433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Sun W, Zhao R, Yang Y, Wang H, Shao Y, Kong X (2013) Comparative study of human aortic and mitral valve interstitial cell gene expression and cellular function. Genomics 101:326–335. doi:10.1016/j.ygeno.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  168. Sweatt A, Sane DC, Hutson SM, Wallin R (2003) Matrix Gla protein (MGP) and bone morphogenetic protein-2 in aortic calcified lesions of aging rats. J Thromb Haemost 1:178–185. doi:10.1046/j.1538-7836.2003.00023.x

    Article  CAS  PubMed  Google Scholar 

  169. Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, Kerr KF, Pechlivanis S, Budoff MJ, Harris TB, Malhotra R, O’Brien KD, Kamstrup PR, Nordestgaard BG, Tybjaerg-Hansen A, Allison MA, Aspelund T, Criqui MH, Heckbert SR, Hwang SJ, Liu Y, Sjogren M, van der Pals J, Kalsch H, Muhleisen TW, Nothen MM, Cupples LA, Caslake M, Di Angelantonio E, Danesh J, Rotter JI, Sigurdsson S, Wong Q, Erbel R, Kathiresan S, Melander O, Gudnason V, O’Donnell CJ, Post WS (2013) Genetic associations with valvular calcification and aortic stenosis. N Engl J Med 368:503–512. doi:10.1056/NEJMoa1109034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Thanassoulis G, Massaro JM, Cury R, Manders E, Benjamin EJ, Vasan RS, Cupple LA, Hoffmann U, O’Donnell CJ, Kathiresan S (2010) Associations of long-term and early adult atherosclerosis risk factors with aortic and mitral valve calcium. J Am Coll Cardiol 55:2491–2498. doi:10.1016/j.jacc.2010.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Thornton G, Frank C, Shrive N (2001) Ligament creep behavior can be predicted from stress relaxation by incorporating fiber recruitment. J Rheol 45:493–507. doi:10.1122/1.1343877

    Article  CAS  Google Scholar 

  172. Tintut Y, Patel J, Parhami F, Demer LL (2000) Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102:2636–2642. doi:10.1161/01.cir.102.21.2636

    Article  CAS  PubMed  Google Scholar 

  173. Tremble P, Chiquet-Ehrismann R, Werb Z (1994) The extracellular matrix ligands fibronectin and tenascin collaborate in regulating collagenase gene expression in fibroblasts. Mol Biol Cell 5:439–453. doi:10.1091/mbc.5.4.439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta 1793:888–892. doi:10.1016/j.bbamcr.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  175. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 24:1–8. doi:10.1111/j.1365-2370.1997.tb00001.x

    Article  CAS  PubMed  Google Scholar 

  176. Ueland T, Gullestad L, Dahl CP, Aukrust P, Aakhus S, Solberg OG, Vermeer C, Schurgers LJ (2010) Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J Intern Med 268:483–492. doi:10.1111/j.1365-2796.2010.02264.x

    Article  CAS  PubMed  Google Scholar 

  177. Vahanian A, Iung B (2012) The new ESC/EACTS guidelines on the management of valvular heart disease. Arch Cardiovasc Dis 105:465–467. doi:10.1016/j.acvd.2012.09.001

    Article  PubMed  Google Scholar 

  178. Venardos N, Bennett D, Weyant MJ, Reece TB, Meng X, Fullerton DA (2015) Matrix Gla protein regulates calcification of the aortic valve. J Surg Res. doi:10.1016/j.jss.2015.04.076

    PubMed  Google Scholar 

  179. Venardos N, Nadlonek NA, Zhan Q, Weyant MJ, Reece TB, Meng X, Fullerton DA (2014) Aortic valve calcification is mediated by a differential response of aortic valve interstitial cells to inflammation. J Surg Res 190:1–8. doi:10.1016/j.jss.2014.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Vyavahare N, Ogle M, Schoen FJ, Zand R, Gloeckner DC, Sacks M, Levy RJ (1999) Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. J Biomed Mater Res 46:44–50. doi:10.1002/(sici)1097-4636(199907)46:1<44:aid-jbm5>3.3.co;2-4

    Article  CAS  PubMed  Google Scholar 

  181. Wang D, Zeng Q, Song R, Ao L, Fullerton DA, Meng X (2014) Ligation of ICAM-1 on human aortic valve interstitial cells induces the osteogenic response: a critical role of the Notch1-NF-kappaB pathway in BMP-2 expression. Biochim Biophys Acta 1843:2744–2753. doi:10.1016/j.bbamcr.2014.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Westendorp RG, Langermans JA, Huizinga TW, Elouali AH, Verweij CL, Boomsma DI, Vandenbroucke JP (1997) Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349:170–173. doi:10.1016/s0140-6736(05)63055-3

    Article  CAS  PubMed  Google Scholar 

  183. Wilson CL, Gough PJ, Chang CA, Chan CK, Frey JM, Liu Y, Braun KR, Chin MT, Wight TN, Raines EW (2013) Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults. Mech Dev 130:272–289. doi:10.1016/j.mod.2013.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yang X, Fullerton DA, Su X, Ao L, Cleveland JC Jr, Meng X (2009) Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. J Am Coll Cardiol 53:491–500. doi:10.1016/j.jacc.2008.09.052

    Article  CAS  PubMed  Google Scholar 

  185. Yip CY, Chen JH, Zhao R, Simmons CA (2009) Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol 29:936–942. doi:10.1161/atvbaha.108.182394

    Article  CAS  PubMed  Google Scholar 

  186. Zeng Q, Song R, Ao L, Weyant MJ, Lee J, Xu D, Fullerton DA, Meng X (2013) Notch1 promotes the pro-osteogenic response of human aortic valve interstitial cells via modulation of ERK1/2 and nuclear factor-kappaB activation. Arterioscler Thromb Vasc Biol 33:1580–1590. doi:10.1161/ATVBAHA.112.300912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhan Q, Song R, Zeng Q, Yao Q, Ao L, Xu D, Fullerton DA, Meng X (2015) Activation of TLR3 induces osteogenic responses in human aortic valve interstitial cells through the NF-kappaB and ERK1/2 pathways. Int J Biol Sci 11:482–493. doi:10.7150/ijbs.10905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Spadaccio.

Ethics declarations

Funding

This work was supported in part by MIUR-PRIN “Engineering physiologically and pathologically relevant organ models for the investigation of age-related diseases” (Grant # 2010J8RYS7).

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spadaccio, C., Mozetic, P., Nappi, F. et al. Cells and extracellular matrix interplay in cardiac valve disease: because age matters. Basic Res Cardiol 111, 16 (2016). https://doi.org/10.1007/s00395-016-0534-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0534-9

Keywords

Navigation