Skip to main content

Advertisement

Log in

Neurobiology of zinc and its role in neurogenesis

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Zinc (Zn) has a diverse role in many biological processes, such as growth, immunity, anti-oxidation system, homeostatic, and repairing. It acts as a regulatory and structural catalyst ion for activities of various proteins, enzymes, and signal transcription factors, as well as cell proliferation, differentiation, and survival. The Zn ion is essential for neuronal signaling and is mainly distributed within presynaptic vesicles. Zn modulates neuronal plasticity and synaptic activity in both neonatal and adult stages. Alterations in brain Zn status results in a dozen neurological diseases including impaired brain development. Numerous researchers are working on neurogenesis, however, there is a paucity of knowledge about neurogenesis, especially in neurogenesis in adults.

Summary

Neurogenesis is a multifactorial process and is regulated by many metal ions (e.g. Fe, Cu, Zn, etc.). Among them, Zn has an essential role in neurogenesis. At the molecular level, Zn controls cell cycle, apoptosis, and binding of DNA and several proteins including transcriptional and translational factors. Zn is needed for protein folding and function and Zn acts as an anti-apoptotic agent; organelle stabilizer; and an anti-inflammatory agent. Zn deficiency results in aging, neurodegenerative disease, immune deficiency, abnormal growth, cancer, and other symptoms. Prenatal deficiency of Zn results in developmental disorders in humans and animals.

Conclusion

Both in vitro and in vivo studies have shown an association between Zn deficiency and increased risk of neurological disorders. This article reviews the existing knowledge on the role of Zn and its importance in neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

LTP:

Long-term potentiation

BBB:

Blood–brain barrier

SVZ:

Subventricular zone

SGZ:

Subgranular zone

CNS:

Central nervous system

OB:

Olfactory bulb

NSCs:

Neural stem/precursor cells

MTs:

Metallothioneins

PCNA:

Proliferating cell nuclear antigen

PHH3:

Phospho-Histone H3

BrdU:

5-Bromo-2′-deoxyuridine

MCM2:

Mini chromosome maintenance protein 2

GFAP:

Glial fibrillary acidic protein

BLBP:

Brain lipid-binding protein

NeuroD:

Neurogenic differentiation

Nestin:

Neuroepithelial stem cell protein

BDNF:

Brain-derived neurotrophic factor

NGF:

Nerve growth factor

NT-3:

Neurotrophin-3

NT-4:

Neurotrophin-4

Trk:

Tropomyosin-related kinase

p75NTR:

P75 neurotrophin receptor

Zn:

Zinc

ZnFPs:

Zn finger proteins

References

  1. Ono S, Cherian MG (1999) Regional distribution of metallothionein, zinc, and copper in the brain of different strains of rats. Biol Trace Elem Res 69(2):151–159. https://doi.org/10.1007/BF02783866

    Article  CAS  PubMed  Google Scholar 

  2. Gulya K, Kovacs GL, Kasa P (1991) Partial depletion of endogenous zinc level by (D-Pen2, D-Pen5) enkephalin in the rat brain. Life Sci 48(12):PL57-62. https://doi.org/10.1016/0024-3205(91)90462-k

    Article  CAS  PubMed  Google Scholar 

  3. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130(5S Suppl):1471S-1483S. https://doi.org/10.1093/jn/130.5.1471S

    Article  CAS  PubMed  Google Scholar 

  4. Pekun TG, Hrynevich SV, Waseem TV, Fedorovich SV (2014) Role of iron, zinc and reduced glutathione in oxidative stress induction by low pH in rat brain synaptosomes. Springerplus 3:560. https://doi.org/10.1186/2193-1801-3-560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singla N, Dhawan DK (2012) Regulatory role of zinc during aluminium-induced altered carbohydrate metabolism in rat brain. J Neurosci Res 90(3):698–705. https://doi.org/10.1002/jnr.22790

    Article  CAS  PubMed  Google Scholar 

  6. Kalappa BI, Anderson CT, Goldberg JM, Lippard SJ, Tzounopoulos T (2015) AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci USA 112(51):15749–15754. https://doi.org/10.1073/pnas.1512296112

    Article  CAS  PubMed  Google Scholar 

  7. Blakemore LJ, Trombley PQ (2017) Zinc as a neuromodulator in the central nervous system with a focus on the olfactory bulb. Front Cell Neurosci 11:297. https://doi.org/10.3389/fncel.2017.00297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neely CLC, Lippi SLP, Lanzirotti A, Flinn JM (2019) Localization of free and bound metal species through X-Ray synchrotron fluorescence microscopy in the rodent brain and their relation to behavior. Brain Sci. https://doi.org/10.3390/brainsci9040074

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sensi SL, Paoletti P, Koh JY, Aizenman E, Bush AI, Hershfinkel M (2011) The neurophysiology and pathology of brain zinc. J Neurosci 31(45):16076–16085. https://doi.org/10.1523/JNEUROSCI.3454-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gower-Winter SD, Levenson CW (2012) Zinc in the central nervous system: from molecules to behavior. BioFactors 38(3):186–193. https://doi.org/10.1002/biof.1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5(33):33. https://doi.org/10.3389/fnagi.2013.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cope EC, Morris DR, Gower-Winter SD, Brownstein NC, Levenson CW (2016) Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury. Exp Neurol 279:96–103. https://doi.org/10.1016/j.expneurol.2016.02.017

    Article  CAS  PubMed  Google Scholar 

  13. Levenson CW (2020) Zinc and traumatic brain injury: from chelation to supplementation. Med Sci (Basel) 8(3):36. https://doi.org/10.3390/medsci8030036

    Article  CAS  Google Scholar 

  14. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters—a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med 34(2–3):548–560. https://doi.org/10.1016/j.mam.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  15. Schweigel-Rontgen M (2014) The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Curr Top Membr 73:321–355. https://doi.org/10.1016/B978-0-12-800223-0.00009-8

    Article  CAS  PubMed  Google Scholar 

  16. Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34(2–3):612–619. https://doi.org/10.1016/j.mam.2012.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee JY, Kim JS, Byun HR, Palmiter RD, Koh JY (2011) Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Res 1418:12–22. https://doi.org/10.1016/j.brainres.2011.08.055

    Article  CAS  PubMed  Google Scholar 

  18. Tyszka-Czochara M, Grzywacz A, Gdula-Argasinska J, Librowski T, Wilinski B, Opoka W (2014) The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function. Acta Polon Pharm 71(3):369–377

    Google Scholar 

  19. Wiseman DA, Sharma S, Black SM (2010) Elevated zinc induces endothelial apoptosis via disruption of glutathione metabolism: role of the ADP translocator. Biometals 23(1):19–30. https://doi.org/10.1007/s10534-009-9263-y

    Article  CAS  PubMed  Google Scholar 

  20. Wong CP, Ho E (2012) Zinc and its role in age-related inflammation and immune dysfunction. Mol Nutr Food Res 56(1):77–87. https://doi.org/10.1002/mnfr.201100511

    Article  CAS  PubMed  Google Scholar 

  21. Morris DR, Levenson CW (2017) Neurotoxicity of zinc. Adv Neurobiol 18:303–312. https://doi.org/10.1007/978-3-319-60189-2_15

    Article  PubMed  Google Scholar 

  22. Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17(3):336. https://doi.org/10.3390/ijms17030336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang LH, Wang X, Zheng ZH, Ren H, Stoltenberg M, Danscher G, Huang L, Rong M, Wang ZY (2010) Altered expression and distribution of zinc transporters in APP/PS1 transgenic mouse brain. Neurobiol Aging 31(1):74–87. https://doi.org/10.1016/j.neurobiolaging.2008.02.018

    Article  CAS  PubMed  Google Scholar 

  24. Baltaci AK, Yuce K (2018) Zinc transporter proteins. Neurochem Res 43(3):517–530. https://doi.org/10.1007/s11064-017-2454-y

    Article  CAS  PubMed  Google Scholar 

  25. Qian J, Xu K, Yoo J, Chen TT, Andrews G, Noebels JL (2011) Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J Neurosci 31(1):97–104. https://doi.org/10.1523/JNEUROSCI.5162-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dufner-Beattie J, Huang ZL, Geiser J, Xu W, Andrews GK (2006) Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44(5):239–251. https://doi.org/10.1002/dvg.20211

    Article  CAS  PubMed  Google Scholar 

  27. Chowanadisai W, Lonnerdal B, Kelleher SL (2008) Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res 1199:10–19. https://doi.org/10.1016/j.brainres.2008.01.015

    Article  CAS  PubMed  Google Scholar 

  28. Chowanadisai W, Graham DM, Keen CL, Rucker RB, Messerli MA (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci USA 110(24):9903–9908. https://doi.org/10.1073/pnas.1222142110

    Article  CAS  PubMed  Google Scholar 

  29. Florianczyk B, Osuchowski J, Kaczmarczyk R, Trojanowski T, Stryjecka-Zimmer M (2003) Influence of metallothioneins on zinc and copper distribution in brain tumours. Folia Neuropathol 41(1):11–14

    CAS  PubMed  Google Scholar 

  30. Burdette SC, Lippard SJ (2003) Meeting of the minds: metalloneurochemistry. Proc Natl Acad Sci USA 100(7):3605–3610. https://doi.org/10.1073/pnas.0637711100

    Article  CAS  PubMed  Google Scholar 

  31. Krezel A, Maret W (2017) The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci 18(6):1237. https://doi.org/10.3390/ijms18061237

    Article  CAS  PubMed Central  Google Scholar 

  32. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14(3):6044–6066. https://doi.org/10.3390/ijms14036044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thirumoorthy N, Shyam Sunder A, Manisenthil Kumar K, Senthil Kumar M, Ganesh G, Chatterjee M (2011) A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol 9:54. https://doi.org/10.1186/1477-7819-9-54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palumaa P, Eriste E, Njunkova O, Pokras L, Jornvall H, Sillard R (2002) Brain-specific metallothionein-3 has higher metal-binding capacity than ubiquitous metallothioneins and binds metals noncooperatively. Biochemistry 41(19):6158–6163. https://doi.org/10.1021/bi025664v

    Article  CAS  PubMed  Google Scholar 

  35. Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55(2):133–145. https://doi.org/10.1016/s0361-9230(01)00452-x

    Article  CAS  PubMed  Google Scholar 

  36. Velazquez RA, Cai Y, Shi Q, Larson AA (1999) The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission. J Neurosci 19(6):2288–2300

    Article  CAS  Google Scholar 

  37. Carrasco J, Hernandez J, Gonzalez B, Campbell IL, Hidalgo J (1998) Localization of metallothionein-I and -III expression in the CNS of transgenic mice with astrocyte-targeted expression of interleukin 6. Exp Neurol 153(2):184–194. https://doi.org/10.1006/exnr.1998.6861

    Article  CAS  PubMed  Google Scholar 

  38. Juarez-Rebollar D, Rios C, Nava-Ruiz C, Mendez-Armenta M (2017) Metallothionein in brain disorders. Oxid Med Cell Longev 2017:5828056. https://doi.org/10.1155/2017/5828056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD (1994) Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci 14(10):5844–5857

    Article  CAS  Google Scholar 

  40. Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R (2012) Mammalian metallothioneins: properties and functions. Metallomics 4(8):739–750. https://doi.org/10.1039/c2mt20081c

    Article  CAS  PubMed  Google Scholar 

  41. Lee JY, Kim JH, Palmiter RD, Koh JY (2003) Zinc released from metallothionein-III may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp Neurol 184(1):337–347. https://doi.org/10.1016/S0014-4886(03)00382-0

    Article  CAS  PubMed  Google Scholar 

  42. Lee SJ, Koh JY (2010) Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 3(1):30. https://doi.org/10.1186/1756-6606-3-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu X, Zeng A, Zheng W, Du Y (2014) Upregulation of zinc transporter 2 in the blood-CSF barrier following lead exposure. Exp Biol Med (Maywood) 239(2):202–212. https://doi.org/10.1177/1535370213509213

    Article  CAS  Google Scholar 

  44. Qi Z, Liu KJ (2019) The interaction of zinc and the blood-brain barrier under physiological and ischemic conditions. Toxicol Appl Pharmacol 364:114–119. https://doi.org/10.1016/j.taap.2018.12.018

    Article  CAS  PubMed  Google Scholar 

  45. Yorulmaz H, Seker FB, Demir G, Yalcin IE, Oztas B (2013) The effects of zinc treatment on the blood-brain barrier permeability and brain element levels during convulsions. Biol Trace Elem Res 151(2):256–262. https://doi.org/10.1007/s12011-012-9546-y

    Article  CAS  PubMed  Google Scholar 

  46. Noseworthy MD, Bray TM (2000) Zinc deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia measured by dynamic MRI. Proc Soc Exp Biol Med 223(2):175–182. https://doi.org/10.1046/j.1525-1373.2000.22324.x

    Article  CAS  PubMed  Google Scholar 

  47. Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, Watanabe M (2012) Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res 226(1):259–264. https://doi.org/10.1016/j.bbr.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  48. Bobilya DJ, Gauthier NA, Karki S, Olley BJ, Thomas WK (2008) Longitudinal changes in zinc transport kinetics, metallothionein and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment. J Nutr Biochem 19(2):129–137. https://doi.org/10.1016/j.jnutbio.2007.06.014

    Article  CAS  PubMed  Google Scholar 

  49. Taupin P (2006) Neurogenesis in the adult central nervous system. CR Biol 329(7):465–475. https://doi.org/10.1016/j.crvi.2006.04.001

    Article  Google Scholar 

  50. Xu W, Lakshman N, Morshead CM (2017) Building a central nervous system: the neural stem cell lineage revealed. Neurogenesis 4(1):e1300037. https://doi.org/10.1080/23262133.2017.1300037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taverna E, Gotz M, Huttner WB (2014) The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol 30(1):465–502. https://doi.org/10.1146/annurev-cellbio-101011-155801

    Article  CAS  PubMed  Google Scholar 

  52. Augusto-Oliveira M, Arrifano GPF, Malva JO, Crespo-Lopez ME (2019) Adult hippocampal neurogenesis in different taxonomic groups: possible functional similarities and striking controversies. Cells. https://doi.org/10.3390/cells8020125

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang J, Jiao J (2015) Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. Biomed Res Int 2015:727542. https://doi.org/10.1155/2015/727542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zacchetti A, van Garderen E, Teske E, Nederbragt H, Dierendonck JH, Rutteman GR (2003) Validation of the use of proliferation markers in canine neoplastic and non-neoplastic tissues: comparison of KI-67 and proliferating cell nuclear antigen (PCNA) expression versus in vivo bromodeoxyuridine labelling by immunohistochemistry. APMIS 111(3):430–438. https://doi.org/10.1034/j.1600-0463.2003.t01-1-1110208.x

    Article  CAS  PubMed  Google Scholar 

  55. Limke TL, Cai J, Miura T, Rao MS, Mattson MP (2003) Distinguishing features of progenitor cells in the late embryonic and adult hippocampus. Dev Neurosci 25(2–4):257–272. https://doi.org/10.1159/000072273

    Article  CAS  PubMed  Google Scholar 

  56. Han J, Zhao J, Jiang J, Ma X, Liu X, Wang C, Jiang S, Wan C (2015) Zinc deficiency impairs the renewal of hippocampal neural stem cells in adult rats: involvement of FoxO3a activation and downstream p27(kip1) expression. J Neurochem 134(5):879–891. https://doi.org/10.1111/jnc.13199

    Article  CAS  PubMed  Google Scholar 

  57. Choi BY, Kim IY, Kim JH, Lee BE, Lee SH, Kho AR, Sohn M, Suh SW (2016) Zinc plus cyclo-(His-Pro) promotes hippocampal neurogenesis in rats. Neuroscience 339:634–643. https://doi.org/10.1016/j.neuroscience.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  58. Kim JH, Jang BG, Choi BY, Kwon LM, Sohn M, Song HK, Suh SW (2012) Zinc chelation reduces hippocampal neurogenesis after pilocarpine-induced seizure. PLoS ONE 7(10):e48543. https://doi.org/10.1371/journal.pone.0048543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. https://doi.org/10.1146/annurev.neuro.24.1.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919–2937. https://doi.org/10.1101/gad.841400

    Article  CAS  PubMed  Google Scholar 

  61. Weissmiller AM, Wu C (2012) Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 1(1):14. https://doi.org/10.1186/2047-9158-1-14

    Article  PubMed  PubMed Central  Google Scholar 

  62. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25(11):1386–1403. https://doi.org/10.1002/neu.480251107

    Article  CAS  PubMed  Google Scholar 

  63. Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253. https://doi.org/10.1146/annurev.ne.18.030195.001255

    Article  CAS  PubMed  Google Scholar 

  64. Numakawa T, Odaka H, Adachi N (2017) Actions of brain-derived neurotrophic factor and glucocorticoid stress in neurogenesis. Int J Mol Sci 18(11):2312. https://doi.org/10.3390/ijms18112312

    Article  CAS  PubMed Central  Google Scholar 

  65. Solati Z, Jazayeri S, Tehrani-Doost M, Mahmoodianfard S, Gohari MR (2015) Zinc monotherapy increases serum brain-derived neurotrophic factor (BDNF) levels and decreases depressive symptoms in overweight or obese subjects: a double-blind, randomized, placebo-controlled trial. Nutr Neurosci 18(4):162–168. https://doi.org/10.1179/1476830513Y.0000000105

    Article  CAS  PubMed  Google Scholar 

  66. Nam SM, Kim JW, Kwon HJ, Yoo DY, Jung HY, Kim DW, Hwang IK, Seong JK, Yoon YS (2017) Differential effects of low- and high-dose zinc supplementation on synaptic plasticity and neurogenesis in the hippocampus of control and high-fat diet-fed mice. Neurochem Res 42(11):3149–3159. https://doi.org/10.1007/s11064-017-2353-2

    Article  CAS  PubMed  Google Scholar 

  67. Yang Y, Jing XP, Zhang SP, Gu RX, Tang FX, Wang XL, Xiong Y, Qiu M, Sun XY, Ke D, Wang JZ, Liu R (2013) High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling. PLoS ONE 8(1):e55384. https://doi.org/10.1371/journal.pone.0055384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sowa-Kucma M, Legutko B, Szewczyk B, Novak K, Znojek P, Poleszak E, Papp M, Pilc A, Nowak G (2008) Antidepressant-like activity of zinc: further behavioral and molecular evidence. J Neural Transm 115(12):1621–1628. https://doi.org/10.1007/s00702-008-0115-7

    Article  CAS  PubMed  Google Scholar 

  69. Corona C, Masciopinto F, Silvestri E, Viscovo AD, Lattanzio R, Sorda RL, Ciavardelli D, Goglia F, Piantelli M, Canzoniero LM, Sensi SL (2010) Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction. Cell Death Dis 1:e91. https://doi.org/10.1038/cddis.2010.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hwang JJ, Park MH, Choi SY, Koh JY (2005) Activation of the Trk signaling pathway by extracellular zinc. Role of metalloproteinases. J Biol Chem 280(12):11995–12001. https://doi.org/10.1074/jbc.M403172200

    Article  CAS  PubMed  Google Scholar 

  71. Poddar R, Rajagopal S, Shuttleworth CW, Paul S (2016) Zn2+-dependent activation of the Trk signaling pathway induces phosphorylation of the brain-enriched tyrosine phosphatase STEP: MOLECULAR BASIS FOR ZN2+−INDUCED ERK MAPK ACTIVATION. J Biol Chem 291(2):813–825. https://doi.org/10.1074/jbc.M115.663468

    Article  CAS  PubMed  Google Scholar 

  72. Helgager J, Huang YZ, McNamara JO (2014) Brain-derived neurotrophic factor but not vesicular zinc promotes TrkB activation within mossy fibers of mouse hippocampus in vivo. J Comp Neurol 522(17):3885–3899. https://doi.org/10.1002/cne.23647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO (2011) Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 71(6):1116–1126. https://doi.org/10.1016/j.neuron.2011.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hwang IY, Sun ES, An JH, Im H, Lee SH, Lee JY, Han PL, Koh JY, Kim YH (2011) Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases. J Neurochem 118(5):855–863. https://doi.org/10.1111/j.1471-4159.2011.07322.x

    Article  CAS  PubMed  Google Scholar 

  75. Frazzini V, Granzotto A, Bomba M, Massetti N, Castelli V, d’Aurora M, Punzi M, Iorio M, Mosca A, Delli Pizzi S, Gatta V, Cimini A, Sensi SL (2018) The pharmacological perturbation of brain zinc impairs BDNF-related signaling and the cognitive performances of young mice. Sci Rep 8(1):9768. https://doi.org/10.1038/s41598-018-28083-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang W, Post JI, Dow KE, Shin SH, Riopelle RJ, Ross GM (1999) Zinc and copper inhibit nerve growth factor-mediated protection from oxidative stress-induced apoptosis. Neurosci Lett 259(2):115–118. https://doi.org/10.1016/s0304-3940(98)00929-x

    Article  CAS  PubMed  Google Scholar 

  77. Shamovsky IL, Ross GM, Riopelle RJ, Weaver DF (1999) The interaction of neurotrophins with the p75NTR common neurotrophin receptor: a comprehensive molecular modeling study. Protein Sci 8(11):2223–2233. https://doi.org/10.1110/ps.8.11.2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ross GM, Shamovsky IL, Woo SB, Post JI, Vrkljan PN, Lawrance G, Solc M, Dostaler SM, Neet KE, Riopelle RJ (2001) The binding of zinc and copper ions to nerve growth factor is differentially affected by pH: implications for cerebral acidosis. J Neurochem 78(3):515–523. https://doi.org/10.1046/j.1471-4159.2001.00427.x

    Article  CAS  PubMed  Google Scholar 

  79. Allington C, Shamovsky IL, Ross GM, Riopelle RJ (2001) Zinc inhibits p75NTR-mediated apoptosis in chick neural retina. Cell Death Differ 8(5):451–456. https://doi.org/10.1038/sj.cdd.4400831

    Article  CAS  PubMed  Google Scholar 

  80. Travaglia A, Pietropaolo A, La Mendola D, Nicoletti VG, Rizzarelli E (2012) The inorganic perspectives of neurotrophins and Alzheimer’s disease. J Inorg Biochem 111:130–137. https://doi.org/10.1016/j.jinorgbio.2011.10.017

    Article  CAS  PubMed  Google Scholar 

  81. Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2(2):96–100. https://doi.org/10.3945/an.110.000174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fu S, Jiang W, Zheng W (2015) Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus. Front Mol Neurosci 8:22. https://doi.org/10.3389/fnmol.2015.00022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carlson ES, Tkac I, Magid R, O’Connor MB, Andrews NC, Schallert T, Gunshin H, Georgieff MK, Petryk A (2009) Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 139(4):672–679. https://doi.org/10.3945/jn.108.096354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Adamson SX, Shen X, Jiang W, Lai V, Wang X, Shannahan JH, Cannon JR, Chen J, Zheng W (2018) Subchronic manganese exposure impairs neurogenesis in the adult rat hippocampus. Toxicol Sci 163(2):592–608. https://doi.org/10.1093/toxsci/kfy062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kikuchihara Y, Abe H, Tanaka T, Kato M, Wang L, Ikarashi Y, Yoshida T, Shibutani M (2015) Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice. Toxicology 331:24–34. https://doi.org/10.1016/j.tox.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  86. Ashraf A, Michaelides C, Walker TA, Ekonomou A, Suessmilch M, Sriskanthanathan A, Abraha S, Parkes A, Parkes HG, Geraki K, So PW (2019) Regional distributions of iron, copper and zinc and their relationships with glia in a normal aging mouse model. Front Aging Neurosci 11(351):351. https://doi.org/10.3389/fnagi.2019.00351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250. https://doi.org/10.1146/annurev.neuro.28.051804.101459

    Article  CAS  PubMed  Google Scholar 

  88. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130(5S Suppl):1500S-1508S. https://doi.org/10.1093/jn/130.5.1500S

    Article  CAS  PubMed  Google Scholar 

  89. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11(1):39–46. https://doi.org/10.1016/s0959-440x(00)00167-6

    Article  CAS  PubMed  Google Scholar 

  90. Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschella G (2017) Zinc-finger proteins in health and disease. Cell Death Discov 3(1):17071. https://doi.org/10.1038/cddiscovery.2017.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fidalgo M, Shekar PC, Ang YS, Fujiwara Y, Orkin SH, Wang J (2011) Zfp281 functions as a transcriptional repressor for pluripotency of mouse embryonic stem cells. Stem Cells 29(11):1705–1716. https://doi.org/10.1002/stem.736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R (2011) Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 6:25. https://doi.org/10.1186/1749-8104-6-25

    Article  PubMed  PubMed Central  Google Scholar 

  93. Xie Z, Ma X, Ji W, Zhou G, Lu Y, Xiang Z, Wang YX, Zhang L, Hu Y, Ding YQ, Zhang WJ (2010) Zbtb20 is essential for the specification of CA1 field identity in the developing hippocampus. Proc Natl Acad Sci USA 107(14):6510–6515. https://doi.org/10.1073/pnas.0912315107

    Article  PubMed  Google Scholar 

  94. Eckler MJ, McKenna WL, Taghvaei S, McConnell SK, Chen B (2011) Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J Comp Neurol 519(10):1829–1846. https://doi.org/10.1002/cne.22596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E (2012) Maternal zinc supplementation improves spatial memory in rat pups. Biol Trace Elem Res 147(1–3):299–308. https://doi.org/10.1007/s12011-012-9323-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang H, Hu YF, Hao JH, Chen YH, Su PY, Wang Y, Yu Z, Fu L, Xu YY, Zhang C, Tao FB, Xu DX (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep 5:11262. https://doi.org/10.1038/srep11262

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yu X, Chen W, Wei Z, Ren T, Yang X, Yu X (2016) Effects of maternal mild zinc deficiency and different ways of zinc supplementation for offspring on learning and memory. Food Nutr Res 60:29467. https://doi.org/10.3402/fnr.v60.29467

    Article  CAS  PubMed  Google Scholar 

  98. Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E (2016) Influence of long-term zinc administration on spatial learning and exploratory activity in rats. Biol Trace Elem Res 172(2):408–418. https://doi.org/10.1007/s12011-015-0597-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Azman MS, Wan Saudi WS, Ilhami M, Mutalib MS, Rahman MT (2009) Zinc intake during pregnancy increases the proliferation at ventricular zone of the newborn brain. Nutr Neurosci 12(1):9–12. https://doi.org/10.1179/147683009X388904

    Article  CAS  PubMed  Google Scholar 

  100. Wang FD, Bian W, Kong LW, Zhao FJ, Guo JS, Jing NH (2001) Maternal zinc deficiency impairs brain nestin expression in prenatal and postnatal mice. Cell Res 11(2):135–141. https://doi.org/10.1038/sj.cr.7290078

    Article  CAS  PubMed  Google Scholar 

  101. Aimo L, Mackenzie GG, Keenan AH, Oteiza PI (2010) Gestational zinc deficiency affects the regulation of transcription factors AP-1, NF-kappaB and NFAT in fetal brain. J Nutr Biochem 21(11):1069–1075. https://doi.org/10.1016/j.jnutbio.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Corniola RS, Tassabehji NM, Hare J, Sharma G, Levenson CW (2008) Zinc deficiency impairs neuronal precursor cell proliferation and induces apoptosis via p53-mediated mechanisms. Brain Res 1237:52–61. https://doi.org/10.1016/j.brainres.2008.08.040

    Article  CAS  PubMed  Google Scholar 

  103. Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI (2010) The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res 17(1):1–14. https://doi.org/10.1007/s12640-009-9067-4

    Article  CAS  PubMed  Google Scholar 

  104. Tamano H, Kan F, Oku N, Takeda A (2010) Ameliorative effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient young mice. Brain Res Bull 83(6):351–355. https://doi.org/10.1016/j.brainresbull.2010.08.013

    Article  PubMed  Google Scholar 

  105. Elliott EM, Sapolsky RM (1993) Corticosterone impairs hippocampal neuronal calcium regulation–possible mediating mechanisms. Brain Res 602(1):84–90. https://doi.org/10.1016/0006-8993(93)90245-i

    Article  CAS  PubMed  Google Scholar 

  106. Tauber SC, Schlumbohm C, Schilg L, Fuchs E, Nau R, Gerber J (2006) Intrauterine exposure to dexamethasone impairs proliferation but not neuronal differentiation in the dentate gyrus of newborn common marmoset monkeys. Brain Pathol 16(3):209–217. https://doi.org/10.1111/j.1750-3639.2006.00021.x

    Article  CAS  PubMed  Google Scholar 

  107. Conrad CD, McLaughlin KJ, Harman JS, Foltz C, Wieczorek L, Lightner E, Wright RL (2007) Chronic glucocorticoids increase hippocampal vulnerability to neurotoxicity under conditions that produce CA3 dendritic retraction but fail to impair spatial recognition memory. J Neurosci 27(31):8278–8285. https://doi.org/10.1523/JNEUROSCI.2121-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain PA, Milanesi E, Rybka J, Berry A, Cirulli F, Thuret S, Price J, Riva MA, Gennarelli M, Pariante CM (2013) Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology 38(5):872–883. https://doi.org/10.1038/npp.2012.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gao HL, Zheng W, Xin N, Chi ZH, Wang ZY, Chen J, Wang ZY (2009) Zinc deficiency reduces neurogenesis accompanied by neuronal apoptosis through caspase-dependent and -independent signaling pathways. Neurotox Res 16(4):416–425. https://doi.org/10.1007/s12640-009-9072-7

    Article  CAS  PubMed  Google Scholar 

  110. Suh SW, Won SJ, Hamby AM, Yoo BH, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29(9):1579–1588. https://doi.org/10.1038/jcbfm.2009.80

    Article  CAS  PubMed  Google Scholar 

  111. Adamo AM, Liu X, Mathieu P, Nuttall JR, Supasai S, Oteiza PI (2019) Early developmental marginal zinc deficiency affects neurogenesis decreasing neuronal number and altering neuronal specification in the adult rat brain. Front Cell Neurosci 13:62. https://doi.org/10.3389/fncel.2019.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Naef V, Monticelli S, Corsinovi D, Mazzetto MT, Cellerino A, Ori M (2018) The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. Sci Rep 8(1):11836. https://doi.org/10.1038/s41598-018-30302-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dvergsten CL, Fosmire GJ, Ollerich DA, Sandstead HH (1984) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. II. Impaired maturation of Purkinje cells. Brain Res 318(1):11–20. https://doi.org/10.1016/0165-3806(84)90057-9

    Article  CAS  PubMed  Google Scholar 

  114. Dvergsten CL, Johnson LA, Sandstead HH (1984) Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. III. Impaired dendritic differentiation of basket and stellate cells. Brain Res 318(1):21–26. https://doi.org/10.1016/0165-3806(84)90058-0

    Article  CAS  PubMed  Google Scholar 

  115. Moon MY, Kim HJ, Choi BY, Sohn M, Chung TN, Suh SW (2018) Zinc Promotes adipose-derived mesenchymal stem cell proliferation and differentiation towards a neuronal fate. Stem Cells Int 2018:5736535. https://doi.org/10.1155/2018/5736535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fukumoto K, Morita T, Mayanagi T, Tanokashira D, Yoshida T, Sakai A, Sobue K (2009) Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol Psychiatry 14(12):1119–1131. https://doi.org/10.1038/mp.2009.60

    Article  CAS  PubMed  Google Scholar 

  117. Pfaender S, Fohr K, Lutz AK, Putz S, Achberger K, Linta L, Liebau S, Boeckers TM, Grabrucker AM (2016) Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells. Neural Plast 2016:3760702. https://doi.org/10.1155/2016/3760702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Morris DR, Levenson CW (2013) Zinc regulation of transcriptional activity during retinoic acid-induced neuronal differentiation. J Nutr Biochem 24(11):1940–1944. https://doi.org/10.1016/j.jnutbio.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  119. Seth R, Corniola RS, Gower-Winter SD, Morgan TJ Jr, Bishop B, Levenson CW (2015) Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells. J Trace Elem Med Biol 30:59–65. https://doi.org/10.1016/j.jtemb.2014.10.010

    Article  CAS  PubMed  Google Scholar 

  120. Gower-Winter SD, Corniola RS, Morgan TJ Jr, Levenson CW (2013) Zinc deficiency regulates hippocampal gene expression and impairs neuronal differentiation. Nutr Neurosci 16(4):174–182. https://doi.org/10.1179/1476830512Y.0000000043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Choi BY, Hong DK, Jeong JH, Lee BE, Koh JY, Suh SW (2020) Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells 38(8):994–1006. https://doi.org/10.1002/stem.3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Kumar or Jong-Joo Kim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kumar, A., Singh, K. et al. Neurobiology of zinc and its role in neurogenesis. Eur J Nutr 60, 55–64 (2021). https://doi.org/10.1007/s00394-020-02454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-020-02454-3

Keywords

Navigation