Skip to main content
Log in

Sesamin extends lifespan through pathways related to dietary restriction in Caenorhabditis elegans

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Sesamin, a polyphenolic compound found in sesame seeds, has been reported to exert a variety of beneficial health effects. We have previously reported that sesamin increases the lifespan of Caenorhabditis elegans. In this study, we investigated the molecular mechanisms underlying the longevity effect of sesamin in C. elegans.

Methods

Starting from three days of age, Caenorhabditis elegans animals were fed a standard diet alone or supplemented with sesamin. A C. elegans genome array was used to perform a comprehensive expression analysis. Genes that showed differential expression were validated using real-time PCR. Mutant or RNAi-treated animals were fed sesamin, and the lifespan was determined to identify the genes involved in the longevity effects of sesamin.

Results

The microarray analysis revealed that endoplasmic reticulum unfolded protein response-related genes, which have been reported to show decreased expression under conditions of SIR-2.1/Sirtuin 1 (SIRT1) overexpression, were downregulated in animals supplemented with sesamin. Sesamin failed to extend the lifespan of sir-2.1 knockdown animals and of sir-2.1 loss-of-function mutants. Sesamin was also ineffective in bec-1 RNAi-treated animals; bec-1 is a key regulator of autophagy, and is necessary for longevity induced by sir-2.1 overexpression. Furthermore, the heterozygotic mutation of daf-15, which encodes the target of rapamycin (TOR)-binding partner Raptor, abolished lifespan extension by sesamin. Moreover, sesamin did not prolong the lifespan of loss-of-function mutants of aak-2, which encodes the AMP-activated protein kinase (AMPK).

Conclusions

Sesamin extends the lifespan of C. elegans through several dietary restriction-related signaling pathways, including processes requiring SIRT1, TOR, and AMPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328(5976):321–326. doi:10.1126/science.1172539

    Article  CAS  Google Scholar 

  2. McCay C, Crowell M, Maynard L (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10:63–79

    Article  CAS  Google Scholar 

  3. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204. doi:10.1126/science.1173635

    Article  CAS  Google Scholar 

  4. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557. doi:10.1038/ncomms4557

    Article  Google Scholar 

  5. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489(7415):318–321. doi:10.1038/nature11432

    Article  CAS  Google Scholar 

  6. Partridge L, Piper MD, Mair W (2005) Dietary restriction in Drosophila. Mech Ageing Dev 126(9):938–950. doi:10.1016/j.mad.2005.03.023

    Article  CAS  Google Scholar 

  7. Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6(6):413–429

    Article  CAS  Google Scholar 

  8. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95(22):13091–13096

    Article  CAS  Google Scholar 

  9. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487):2126–2128

    Article  CAS  Google Scholar 

  10. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771):795–800. doi:10.1038/35001622

    Article  CAS  Google Scholar 

  11. Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126(2):257–268. doi:10.1016/j.cell.2006.07.002

    Article  CAS  Google Scholar 

  12. Wang Y, Tissenbaum HA (2006) Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech Ageing Dev 127(1):48–56. doi:10.1016/j.mad.2005.09.005

    Article  CAS  Google Scholar 

  13. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656. doi:10.1016/j.cub.2007.08.047

    Article  CAS  Google Scholar 

  14. Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi:10.1038/nature08980

    Article  CAS  Google Scholar 

  15. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101(45):15998–16003. doi:10.1073/pnas.0404184101

    Article  CAS  Google Scholar 

  16. Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27(19):2072–2085. doi:10.1101/gad.227439.113

    Article  CAS  Google Scholar 

  17. Chen D, Steele AD, Lindquist S, Guarente L (2005) Increase in activity during calorie restriction requires Sirt1. Science 310(5754):1641. doi:10.1126/science.1118357

    Article  CAS  Google Scholar 

  18. Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS One 3(3):e1759. doi:10.1371/journal.pone.0001759

    Article  Google Scholar 

  19. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192. doi:10.1038/ncomms3192

    Article  Google Scholar 

  20. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392. doi:10.1126/science.1099196

    Article  CAS  Google Scholar 

  21. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27(24):8807–8814. doi:10.1128/MCB.01636-07

    Article  CAS  Google Scholar 

  22. Nakagawa T, Guarente L (2009) Urea cycle regulation by mitochondrial sirtuin, SIRT5. Aging 1(6):578–581. doi:10.18632/aging.100062

    Article  CAS  Google Scholar 

  23. Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E, Team CP (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4(3):e76. doi:10.1371/journal.pmed.0040076

    Article  Google Scholar 

  24. Baur JA (2010) Resveratrol, sirtuins, and the promise of a DR mimetic. Mech Ageing Dev 131(4):261–269. doi:10.1016/j.mad.2010.02.007

    Article  CAS  Google Scholar 

  25. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689. doi:10.1038/nature02789

    Article  CAS  Google Scholar 

  26. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342. doi:10.1038/nature05354

    Article  CAS  Google Scholar 

  27. Marchal J, Pifferi F, Aujard F (2013) Resveratrol in mammals: effects on aging biomarkers, age-related diseases, and life span. Ann N Y Acad Sci 1290:67–73. doi:10.1111/nyas.12214

    Article  CAS  Google Scholar 

  28. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8(2):157–168. doi:10.1016/j.cmet.2008.06.011

    Article  CAS  Google Scholar 

  29. Sirato-Yasumoto S, Katsuta M, Okuyama Y, Takahashi Y, Ide T (2001) Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agric Food Chem 49(5):2647–2651

    Article  CAS  Google Scholar 

  30. Gu JY, Wakizono Y, Tsujita A, Lim BO, Nonaka M, Yamada K, Sugano M (1995) Effects of sesamin and alpha-tocopherol, individually or in combination, on the polyunsaturated fatty acid metabolism, chemical mediator production, and immunoglobulin levels in Sprague-Dawley rats. Biosci Biotechnol Biochem 59(12):2198–2202

    Article  CAS  Google Scholar 

  31. Hirose N, Doi F, Ueki T, Akazawa K, Chijiiwa K, Sugano M, Akimoto K, Shimizu S, Yamada H (1992) Suppressive effect of sesamin against 7,12-dimethylbenz[a]-anthracene induced rat mammary carcinogenesis. Anticancer Res 12(4):1259–1265

    CAS  Google Scholar 

  32. Matsumura Y, Kita S, Tanida Y, Taguchi Y, Morimoto S, Akimoto K, Tanaka T (1998) Antihypertensive effect of sesamin. III. Protection against development and maintenance of hypertension in stroke-prone spontaneously hypertensive rats. Biol Pharm Bull 21(5):469–473

    Article  CAS  Google Scholar 

  33. Hirata F, Fujita K, Ishikura Y, Hosoda K, Ishikawa T, Nakamura H (1996) Hypocholesterolemic effect of sesame lignan in humans. Atherosclerosis 122(1):135–136

    Article  CAS  Google Scholar 

  34. Ide T, Ashakumary L, Takahashi Y, Kushiro M, Fukuda N, Sugano M (2001) Sesamin, a sesame lignan, decreases fatty acid synthesis in rat liver accompanying the down-regulation of sterol regulatory element binding protein-1. Biochim Biophys Acta 1534(1):1–13

    Article  CAS  Google Scholar 

  35. Yaguchi Y, Komura T, Kashima N, Tamura M, Kage-Nakadai E, Saeki S, Terao K, Nishikawa Y (2014) Influence of oral supplementation with sesamin on longevity of Caenorhabditis elegans and the host defense. Eur J Nutr 53(8):1659–1668. doi:10.1007/s00394-014-0671-6

    Article  CAS  Google Scholar 

  36. Finch CE, Ruvkun G (2001) The genetics of aging. Annu Rev Genom Hum Genet 2:435–462. doi:10.1146/annurev.genom.2.1.435

    Article  CAS  Google Scholar 

  37. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  Google Scholar 

  38. Kashima N, Fujikura Y, Komura T, Fujiwara S, Sakamoto M, Terao K, Nishikawa Y (2012) Development of a method for oral administration of hydrophobic substances to Caenorhabditis elegans: pro-longevity effects of oral supplementation with lipid-soluble antioxidants. Biogerontology 13(3):337–344. doi:10.1007/s10522-012-9378-3

    Article  CAS  Google Scholar 

  39. Wu D, Rea SL, Yashin AI, Johnson TE (2006) Visualizing hidden heterogeneity in isogenic populations of C. elegans. Exp Gerontol 41(3):261–270. doi:10.1016/j.exger.2006.01.003

    Article  CAS  Google Scholar 

  40. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2(1):RESEARCH0002. doi:10.1186/gb-2000-2-1-research0002

    CAS  Google Scholar 

  41. Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9(5):605–615. doi:10.1016/j.devcel.2005.09.017

    Article  CAS  Google Scholar 

  42. Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG, Ron D (2002) A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 158(4):639–646. doi:10.1083/jcb.200203086

    Article  CAS  Google Scholar 

  43. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I, Michaud M, Madeo F, Tavernarakis N, Kroemer G (2010) The life span-prolonging effect of sirtuin-1 is mediated by autophagy. Autophagy 6(1):186–188

    Article  Google Scholar 

  44. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4(2):e24. doi:10.1371/journal.pgen.0040024

    Article  Google Scholar 

  45. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. doi:10.1016/j.cell.2006.01.016

    Article  CAS  Google Scholar 

  46. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131(16):3897–3906. doi:10.1242/dev.01255

    Article  CAS  Google Scholar 

  47. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15(5):713–724. doi:10.1016/j.cmet.2012.04.007

    Article  CAS  Google Scholar 

  48. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R (2004) The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev 18(24):3004–3009. doi:10.1101/gad.1255404

    Article  CAS  Google Scholar 

  49. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. doi:10.1038/nature01960

    Article  CAS  Google Scholar 

  50. Roth GS, Ingram DK, Lane MA (2001) Caloric restriction in primates and relevance to humans. Ann N Y Acad Sci 928:305–315

    Article  CAS  Google Scholar 

  51. Dhahbi JM, Mote PL, Fahy GM, Spindler SR (2005) Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genom 23(3):343–350. doi:10.1152/physiolgenomics.00069.2005

    Article  CAS  Google Scholar 

  52. Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1):e8758. doi:10.1371/journal.pone.0008758

    Article  Google Scholar 

  53. Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6(4):280–293. doi:10.1016/j.cmet.2007.08.011

    Article  CAS  Google Scholar 

  54. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2(9):E296. doi:10.1371/journal.pbio.0020296

    Article  Google Scholar 

  55. Kennedy BK, Smith ED, Kaeberlein M (2005) The enigmatic role of Sir2 in aging. Cell 123(4):548–550. doi:10.1016/j.cell.2005.11.002

    Article  CAS  Google Scholar 

  56. Hamada N, Tanaka A, Fujita Y, Itoh T, Ono Y, Kitagawa Y, Tomimori N, Kiso Y, Akao Y, Nozawa Y, Ito M (2011) Involvement of heme oxygenase-1 induction via Nrf2/ARE activation in protection against H2O2-induced PC12 cell death by a metabolite of sesamin contained in sesame seeds. Bioorg Med Chem 19(6):1959–1965. doi:10.1016/j.bmc.2011.01.059

    Article  CAS  Google Scholar 

  57. Tanabe H, Kuribayashi K, Tsuji N, Tanaka M, Kobayashi D, Watanabe N (2011) Sesamin induces autophagy in colon cancer cells by reducing tyrosine phosphorylation of EphA1 and EphB2. Int J Oncol 39(1):33–40. doi:10.3892/ijo.2011.1011

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN; supported by the National Institutes of Health-National Center for Research Resources) for providing C. elegans strains, and M. Doe for supporting the NMR analyses. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (to Y.N.) and by a Grant-in-Aid for young scientists from the JSPS (to E.K-N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriko Kage-Nakadai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatani, Y., Yaguchi, Y., Komura, T. et al. Sesamin extends lifespan through pathways related to dietary restriction in Caenorhabditis elegans . Eur J Nutr 57, 1137–1146 (2018). https://doi.org/10.1007/s00394-017-1396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-017-1396-0

Keywords

Navigation