Skip to main content
Log in

Effects of red wine on postprandial stress: potential implication in non-alcoholic fatty liver disease development

  • Review
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Introduction

Red wine consumption is considered to be protective against oxidative stress. Diet strongly influences non-alcoholic fatty liver disease, which is associated with oxidative stress and is considered the hepatic manifestation of the metabolic syndrome.

Methods

We reviewed the available evidence that investigated the effects of red wine on the postprandial-induced metabolic and oxidative stress in humans.

Results

After red wine consumption with meal, despite the improvement in non-enzymatic antioxidant capacity and lipoperoxidation markers, the influence of confounding factors such as uric acid should be taken into account. Both uric acid and triglycerides increases, induced by ethanol, could cause liver damage. On the other hand, further researches are required in order to understand the meaning of the induction of antioxidant enzymes by red wine and red wine polyphenols in the context of non-alcoholic fatty liver disease.

Conclusion

In conclusion, inconsistent and contrasting findings exist regarding the potential benefits of red wine consumption against postprandial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

ADH:

Alcohol dehydrogenase

AP-1:

Activator protein-1

ASH:

Alcoholic steatohepatitis

CAD:

Coronary artery disease

CAT:

Catalase

CHO:

Carbohydrates

CYP2E1:

Cytochrome P450 2E1

DRW:

Dealcoholized red wine

EtOH:

Ethanol

GPX:

Glutathione peroxidase

GST:

Glutathione transferase

HCM:

High-carbohydrate meal

HFHCM:

Mixed high-fat and high-carbohydrate meal

HFM:

High-fat meals

IL:

Interleukin

Keap1:

Kelch-like ECH-associated protein-1

LPS:

Lipopolysaccaride

MDA:

Malondialdehyde

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NEAC:

Non-enzymatic antioxidant capacity

NF-κB:

Nuclear factor-kappa B

Nrf2:

Nuclear factor erythroid 2-related factor 2

OW:

Overweight

oxLDL:

Oxidized low-density lipoproteins

PP:

Polyphenols

RGJ:

Red grape juice

ROS:

Reactive oxygen species

RW:

Red wine

RW-PP:

Red wine polyphenols

SOD:

Superoxide dismutase

T2D:

Type 2 diabetes

TC:

Total cholesterol

TG:

Triglycerides

TLR4:

Toll-like receptor 4

TNF-α:

Tumor necrosis factor alpha

UA:

Uric acid

References

  1. Covas MI, Gambert P, Fitó M, de la Torre R (2010) Wine and oxidative stress: up-to-date evidence of the effects of moderate wine consumption on oxidative damage in humans. Atherosclerosis 208(2):297–304

    Article  CAS  Google Scholar 

  2. Lieber CS (2004) CYP2E1: from ASH to NASH. Hepatol Res 28(1):1–11

    Article  CAS  Google Scholar 

  3. Belia S, Lupattelli G, Urbani E, Vaudo G, Roscini AR, Perni S, Marsili V (2014) Oxidative balance in lymphocytes from patients with nonalcoholic steatohepatitis. Am J Med Sci 348(1):30–36

    Article  Google Scholar 

  4. Sumida Y, Niki E, Naito Y, Yoshikawa T (2013) Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res 47(11):869–880

    Article  CAS  Google Scholar 

  5. Dunn W, Xu R, Schwimmer JB (2008) Modest wine drinking and decreased prevalence of suspected nonalcoholic fatty liver disease. Hepatology 47(6):1947–1954

    Article  Google Scholar 

  6. Carvalhana S, Machado MV, Cortez-Pinto H (2012) Improving dietary patterns in patients with nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care. 15(5):468–473

    Article  CAS  Google Scholar 

  7. Abu-Shanab A, Quigley EM (2010) The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7(12):691–701

    Article  Google Scholar 

  8. Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, Gill SR (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57(2):601–609

    Article  CAS  Google Scholar 

  9. Volynets V, Küper MA, Strahl S, Maier IB, Spruss A, Wagnerberger S, Königsrainer A, Bischoff SC, Bergheim I (2012) Nutrition, intestinal permeability, and blood ethanol levels are altered in patients with nonalcoholic fatty liver disease (NAFLD). Dig Dis Sci 57(7):1932–1941

    Article  CAS  Google Scholar 

  10. Peluso I, Manafikhi H, Palmery M (2014) Free radicals generated by post-prandial oxidative burst in the early alterations of vascular contractility. Clinl Immunol Endocrin Metab Drugs 1(1):27–45

    Article  Google Scholar 

  11. Laugerette F, Vors C, Peretti N, Michalski MC (2011) Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie 93(1):39–45

    Article  CAS  Google Scholar 

  12. Mager DR, Mazurak V, Rodriguez-Dimitrescu C, Vine D, Jetha M, Ball G, Yap J (2013) A meal high in saturated fat evokes postprandial dyslipemia, hyperinsulinemia, and altered lipoprotein expression in obese children with and without nonalcoholic fatty liver disease. JPEN J Parenter Enteral Nutr 37(4):517–528

    Article  CAS  Google Scholar 

  13. Böhm T, Berger H, Nejabat M, Riegler T, Kellner F, Kuttke M, Sagmeister S, Bazanella M, Stolze K, Daryabeigi A, Bintner N, Murkovic M, Wagner KH, Schulte-Hermann R, Rohr-Udilova N, Huber W, Grasl-Kraupp B (2013) Food-derived peroxidized fatty acids may trigger hepatic inflammation: a novel hypothesis to explain steatohepatitis. J Hepatol 59(3):563–570

    Article  Google Scholar 

  14. Ursini F, Zamburlini A, Cazzolato G, Maiorino M, Bon GB, Sevanian A (1998) Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med 25(2):250–252

    Article  CAS  Google Scholar 

  15. Gorelik S, Ligumsky M, Kohen R, Kanner J (2008) A novel function of red wine polyphenols in humans: prevention of absorption of cytotoxic lipid peroxidation products. FASEB J 22(1):41–46

    Article  CAS  Google Scholar 

  16. Blackhurst DM, Marais AD (2006) Concomitant consumption of red wine and polyunsaturated fatty acids in edible oil does not influence the peroxidation status of chylomicron lipids despite increasing plasma catechin concentration. Nutr Metab Cardiovasc Dis 16(8):550–558

    Article  CAS  Google Scholar 

  17. Blanco-Colio LM, Valderrama M, Alvarez-Sala LA, Bustos C, Ortego M, Hernández-Presa MA, Cancelas P, Gómez-Gerique J, Millán J, Egido J (2000) Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation 102(9):1020–1026

    Article  CAS  Google Scholar 

  18. Ceriello A, Bortolotti N, Motz E, Lizzio S, Russo A, Selmo V, Catone B, Tonutti L, Taboga C (1999) Meal-generated oxidative stress in diabetes. The protective effect of red wine. Diabetes Care 22(12):2084–2085

    Article  CAS  Google Scholar 

  19. Ceriello A, Bortolotti N, Motz E, Lizzio S, Catone B, Assaloni R, Tonutti L, Taboga C (2001) Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: a pleasant approach to the prevention of cardiovascular disease in diabetes. Eur J Clin Invest 31:322–328

    Article  CAS  Google Scholar 

  20. Clemente-Postigo M, Queipo-Ortuño MI, Boto-Ordoñez M, Coin-Aragüez L, Roca-Rodriguez MM, Delgado-Lista J, Cardona F, Andres-Lacueva C, Tinahones FJ (2013) Effect of acute and chronic red wine consumption on lipopolysaccharide concentrations. Am J Clin Nutr 97(5):1053–1061

    Article  CAS  Google Scholar 

  21. Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A (2014) Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. Oxid Med Cell Longev. doi:10.1155/2014/681318

    Google Scholar 

  22. Djoussé L, Ellison RC, McLennan CE, Cupples LA, Lipinska I, Tofler GH, Gokce N, Vita JA (1999) Acute effects of a high-fat meal with and without red wine on endothelial function in healthy subjects. Am J Cardiol 84(6):660–664

    Article  Google Scholar 

  23. Hendriks HF, Veenstra J, van Tol A, Groener JE, Schaafsma G (1998) Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition. Alcohol Alcohol 33(4):403–410

    Article  CAS  Google Scholar 

  24. Maxwell S, Crickdhank A, Thorpe G (1994) Red wine and antioxidant activity in serum. Lancet 344:193–194

    Article  CAS  Google Scholar 

  25. Naissides M, Mamo JC, James AP, Pal S (2004) The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis 177(2):401–408

    Article  CAS  Google Scholar 

  26. Napoli R, Guardasole V, Angelini V, Capasso AM, Zarra E, Cittadini A, Matarazzo M, Saccà L (2004) Food and red wine do not exert acute effects on vascular reactivity. Metabolism 53(8):1081–1086

    Article  CAS  Google Scholar 

  27. Natella F, Macone A, Ramberti A, Forte M, Mattivi F, Matarese RM, Scaccini C (2011) Red wine prevents the postprandial increase in plasma cholesterol oxidation products: a pilot study. Br J Nutr 105(12):1718–1723

    Article  CAS  Google Scholar 

  28. Numminen H, Kobayashi M, Uchiyama S, Iwata M, Ikeda Y, Riutta A, Syrjälä M, Kekomäki R, Hillbom M (2000) Effects of alcohol and the evening meal on shear-induced platelet aggregation and urinary excretion of prostanoids. Alcohol Alcohol 35(6):594–600

    Article  CAS  Google Scholar 

  29. Pal S, Naissides M, Mamo J (2004) Polyphenolics and fat absorption. Int J Obes Relat Metab Disord 28(2):324–326

    Article  CAS  Google Scholar 

  30. Ventura P, Bini A, Panini R, Marri L, Tomasi A, Salvioli G (2004) Red wine consumption prevents vascular oxidative stress induced by a high-fat meal in healthy volunteers. Int J Vitam Nutr Res 74(2):137–143

    Article  CAS  Google Scholar 

  31. Williams MJ, Sutherland WH, Whelan AP, McCormick MP, de Jong SA (2004) Acute effect of drinking red and white wines on circulating levels of inflammation-sensitive molecules in men with coronary artery disease. Metabolism 53(3):318–323

    Article  CAS  Google Scholar 

  32. Cao G, Russell RM, Lischner N, Prior RL (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr 128(12):2383–2390

    CAS  Google Scholar 

  33. Chaves AA, Joshi MS, Coyle CM, Brady JE, Dech SJ, Schanbacher BL, Baliga R, Basuray A, Bauer JA (2009) Vasoprotective endothelial effects of a standardized grape product in humans. Vascul Pharmacol 50(1–2):20–26

    Article  CAS  Google Scholar 

  34. Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S (2009) Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem 20(7):521–529

    Article  CAS  Google Scholar 

  35. Natella F, Ghiselli A, Guidi A, Ursini F, Scaccini C (2001) Red wine mitigates the postprandial increase of LDL susceptibility to oxidation. Free Radic Biol Med 30(9):1036–1044

    Article  CAS  Google Scholar 

  36. Natella F, Belelli F, Gentili V, Ursini F, Scaccini C (2002) Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem 50(26):7720–7725

    Article  CAS  Google Scholar 

  37. Prior RL, Gu L, Wu X, Jacob RA, Sotoudeh G, Kader AA, Cook RA (2007) Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr 26(2):170–181

    Article  CAS  Google Scholar 

  38. Hampton SM, Isherwood C, Kirkpatrick VJ, Lynne-Smith AC, Griffin BA (2010) The influence of alcohol consumed with a meal on endothelial function in healthy individuals. J Hum Nutr Diet 23(2):120–125

    Article  CAS  Google Scholar 

  39. Schrieks IC, van den Berg R, Sierksma A, Beulens JW, Vaes WH, Hendriks HF (2013) Effect of red wine consumption on biomarkers of oxidative stress. Alcohol Alcohol 48(2):153–159

    Article  CAS  Google Scholar 

  40. van der Gaag MS, Sierksma A, Schaafsma G, van Tol A, Geelhoed-Mieras T, Bakker M, Hendriks HF (2000) Moderate alcohol consumption and changes in postprandial lipoproteins of premenopausal and postmenopausal women: a diet-controlled, randomized intervention study. J Womens Health Gend Based Med 9(6):607–616

    Article  Google Scholar 

  41. Pastori D, Polimeni L, Baratta F, Pani A, Del Ben M, Angelico F (2014) The efficacy and safety of statins for the treatment of non-alcoholic fatty liver disease. Dig Liver Dis. doi:10.1016/j.dld.2014.07.170

    Google Scholar 

  42. Cowpland C, Su GM, Murray M, Puddey IB, Croft KD (2006) Effect of alcohol on cytochrome p450 arachidonic acid metabolism and blood pressure in rats and its modulation by red wine polyphenolics. Clin Exp Pharmacol Physiol 33(3):183–188

    Article  CAS  Google Scholar 

  43. Piver B, Berthou F, Dreano Y, Lucas D (2001) Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol Lett 125(1–3):83–91

    Article  CAS  Google Scholar 

  44. Avogaro A, Watanabe RM, Gottardo L, de Kreutzenberg S, Tiengo A, Pacini G (2002) Glucose tolerance during moderate alcohol intake: insights on insulin action from glucose/lactate dynamics. J Clin Endocrinol Metab 87(3):1233–1238

    Article  CAS  Google Scholar 

  45. Bantle AE, Thomas W, Bantle JP (2008) Metabolic effects of alcohol in the form of wine in persons with type 2 diabetes mellitus. Metabolism 57(2):241–245

    Article  CAS  Google Scholar 

  46. Brand-Miller JC, Fatema K, Middlemiss C, Bare M, Liu V, Atkinson F, Petocz P (2007) Effect of alcoholic beverages on postprandial glycemia and insulinemia in lean, young, healthy adults. Am J Clin Nutr 85(6):1545–1551

    CAS  Google Scholar 

  47. Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS, Phillips DI (2000) Alcohol consumption and insulin resistance in young adults. Eur J Clin Invest 30(4):297–301

    Article  CAS  Google Scholar 

  48. Greenfield JR, Samaras K, Hayward CS, Chisholm DJ, Campbell LV (2005) Beneficial postprandial effect of a small amount of alcohol on diabetes and cardiovascular risk factors: modification by insulin resistance. J Clin Endocrinol Metab 90(2):661–672

    Article  CAS  Google Scholar 

  49. Hätönen KA, Virtamo J, Eriksson JG, Perälä MM, Sinkko HK, Leiviskä J, Valsta LM (2012) Modifying effects of alcohol on the postprandial glucose and insulin responses in healthy subjects. Am J Clin Nutr 96(1):44–49

    Article  Google Scholar 

  50. Kokavec A, Crowe SF (2003) Effect on plasma insulin and plasma glucose of consuming white wine alone after a meal. Alcohol Clin Exp Res 27(11):1718–1723

    Article  CAS  Google Scholar 

  51. Shai I, Wainstein J, Harman-Boehm I, Raz I, Fraser D, Rudich A, Stampfer MJ (2007) Glycemic effects of moderate alcohol intake among patients with type 2 diabetes: a multicenter, randomized, clinical intervention trial. Diabetes Care 30(12):3011–3016

    Article  CAS  Google Scholar 

  52. Turner BC, Jenkins E, Kerr D, Sherwin RS, Cavan DA (2001) The effect of evening alcohol consumption on next-morning glucose control in type 1 diabetes. Diabetes Care 24(11):1888–1893

    Article  CAS  Google Scholar 

  53. Hausenblas HA, Schoulda JA, Smoliga JM (2014) Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus-systematic review and meta-analysis. Mol Nutr Food Res. doi:10.1002/mnfr.201400173

    Google Scholar 

  54. Wedick NM, Pan A, Cassidy A, Rimm EB, Sampson L, Rosner B, Willett W, Hu FB, Sun Q, van Dam RM (2012) Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am J Clin Nutr 95:925–933

    Article  CAS  Google Scholar 

  55. Chung BH, Doran S, Liang P, Osterlund L, Cho BH, Oster RA, Darnell B, Franklin F (2003) Alcohol-mediated enhancement of postprandial lipemia: a contributing factor to an increase in plasma HDL and a decrease in risk of cardiovascular disease. Am J Clin Nutr 78(3):391–399

    CAS  Google Scholar 

  56. Dalgaard M, Thomsen C, Rasmussen BM, Holst JJ, Hermansen K (2004) Ethanol with a mixed meal decreases the incretin levels early postprandially and increases postprandial lipemia in type 2 diabetic patients. Metabolism 53(1):77–83

    Article  CAS  Google Scholar 

  57. Mudráková E, Poledne R, Kovář J (2013) Postprandial triglyceridemia after single dose of alcohol in healthy young men. Nutr Metab Cardiovasc Dis 23(3):183–188

    Article  Google Scholar 

  58. Cesena FH, Coimbra SR, Andrade AC, da Luz PL (2011) The relationship between body mass index and the variation in plasma levels of triglycerides after short-term red wine consumption. J Clin Lipidol 5(4):294–298

    Article  Google Scholar 

  59. Abu-Amsha Caccetta R, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD (2001) Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med 30(6):636–642

    Article  CAS  Google Scholar 

  60. Pignatelli P, Ghiselli A, Buchetti B, Carnevale R, Natella F, Germanò G, Fimognari F, Di Santo S, Lenti L, Violi F (2006) Polyphenols synergistically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis 188(1):77–83

    Article  CAS  Google Scholar 

  61. Lettieri-Barbato D, Tomei F, Sancini A, Morabito G, Serafini M (2013) Effect of plant foods and beverages on plasma non-enzymatic antioxidant capacity in human subjects: a meta-analysis. Br J Nutr 109(9):1544–1556

    Article  CAS  Google Scholar 

  62. Knasmüller S, Nersesyan A, Misík M, Gerner C, Mikulits W, Ehrlich V, Hoelzl C, Szakmary A, Wagner KH (2008) Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br J Nutr 99:ES3–ES52

    Article  Google Scholar 

  63. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A (1995) A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med 18:29–36

    Article  CAS  Google Scholar 

  64. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  65. Modun D, Music I, Vukovic J, Brizic I, Katalinic V, Obad A, Palada I, Dujic Z, Boban M (2008) The increase in human plasma antioxidant capacity after red wine consumption is due to both plasma urate and wine polyphenols. Atherosclerosis 197(1):250–256

    Article  CAS  Google Scholar 

  66. Day A, Stansbie D (1995) Cardioprotective effect of red wine may be mediated by urate. Clin Chem 41(9):1319–1320

    CAS  Google Scholar 

  67. Fernández-Pachón MS, Villaño D, Troncoso AM, García-Parrilla MC (2005) Antioxidant capacity of plasma after red wine intake in human volunteers. J Agric Food Chem 53(12):5024–5029

    Article  Google Scholar 

  68. Covas MI, Konstantinidou V, Mysytaki E, Fitó M, Weinbrenner T, De La Torre R, Farré-Albadalejo M, Lamuela-Raventós R (2003) Postprandial effects of wine consumption on lipids and oxidative stress biomarkers. Drugs Exp Clin Res 29(5–6):217–223

    CAS  Google Scholar 

  69. Augustin LS, Gallus S, Tavani A, Bosetti C, Negri E, La Vecchia C (2004) Alcohol consumption and acute myocardial infarction: a benefit of alcohol consumed with meals? Epidemiology 15(6):767–769

    Article  Google Scholar 

  70. Gorelik S, Ligumsky M, Kohen R, Kanner J (2008) The stomach as a “bioreactor”: when red meat meets red wine. J Agric Food Chem 56(13):5002–5007

    Article  CAS  Google Scholar 

  71. Zhang J, Xu C, Zhao Y, Chen Y (2014) The significance of serum xanthine oxidoreductase in patients with nonalcoholic fatty liver disease. Clin Lab 60(8):1301–1307

    CAS  Google Scholar 

  72. Xie Y, Wang M, Zhang Y, Zhang S, Tan A, Gao Y, Liang Z, Shi D, Huang Z, Zhang H, Yang X, Lu Z, Wu C, Liao M, Sun Y, Qin X, Hu Y, Li L, Peng T, Li Z, Yang X, Mo Z (2013) Serum uric acid and non-alcoholic fatty liver disease in non-diabetic Chinese men. PLoS One 8(7):e67152. doi:10.1371/journal.pone.0067152

    Article  CAS  Google Scholar 

  73. Miglio C, Peluso I, Raguzzini A, Villaño DV, Cesqui E, Catasta G, Toti E, Serafini M (2013) Antioxidant and inflammatory response following high-fat meal consumption in overweight subjects. Eur J Nutr 52(3):1107–1114

    Article  CAS  Google Scholar 

  74. Cao G, Prior RL (2000) Postprandial increases in serum antioxidant capacity in older women. J Appl Physiol 89:877–883

    CAS  Google Scholar 

  75. Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, Dandona P (2009) Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care 32(12):2281–2287

    Article  CAS  Google Scholar 

  76. Peluso I, Raguzzini A, Villano DV, Cesqui E, Toti E, Catasta G, Serafini M (2012) High fat meal increase of IL-17 is prevented by ingestion of fruit juice drink in healthy overweight subjects. Curr Pharm Des 18:85–90

    Article  CAS  Google Scholar 

  77. Wenfeng Z, Yakun W, Di M, Jianping G, Chuanxin W, Chun H (2014) Kupffer cells: increasingly significant role in nonalcoholic fatty liverdisease. Ann Hepatol 13(5):489–495

    Google Scholar 

  78. Vespasiani-Gentilucci U, Carotti S, Perrone G, Mazzarelli C, Galati G, Onetti-Muda A, Picardi A, Morini S (2014) Hepatic toll-like receptor 4 expression is associated with portal inflammation and fibrosis in patients with NAFLD. Liver Int. doi:10.1111/liv.12531

    Google Scholar 

  79. Tang Y, Bian Z, Zhao L, Liu Y, Liang S, Wang Q, Han X, Peng Y, Chen X, Shen L, Qiu D, Li Z, Ma X (2011) Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol 166(2):281–290

    Article  CAS  Google Scholar 

  80. Ruiz AG, Casafont F, Crespo J, Cayón A, Mayorga M, Estebanez A, Fernadez-Escalante JC, Pons-Romero F (2007) Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg 17(10):1374–1380

    Article  Google Scholar 

  81. Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Järvinen H, Svegliati-Baroni G (2010) From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 42(5):320–330

    Article  CAS  Google Scholar 

  82. Ghanim H, Sia CL, Korzeniewski K, Lohano T, Abuaysheh S, Marumganti A, Chaudhuri A, Dandona P (2011) A resveratrol and polyphenol preparation suppresses oxidative and inflammatory stress response to a high-fat, high-carbohydrate meal. J Clin Endocrinol Metab 96(5):1409–1414

    Article  CAS  Google Scholar 

  83. Ellinger S, Arendt BM, Fimmers R, Stehle P, Spengler U, Goerlich R (2008) Bolus ingestion but not regular consumption of native or dealcoholized red wine modulates selected immunological functions of leukocytes in healthy volunteers. Ann Nutr Metab 52:288–295

    Article  CAS  Google Scholar 

  84. Castilla P, Dávalos A, Teruel JL, Cerrato F, Fernández-Lucas M, Merino JL, Sánchez-Martín CC, Ortuño J, Lasunción MA (2008) Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. Am J Clin Nutr 87(4):1053–1061

    CAS  Google Scholar 

  85. Rodrigo R, Miranda A, Vergara L (2011) Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin Chim Acta 412(5–6):410–424

    Article  CAS  Google Scholar 

  86. Patel C, Ghanim H, Ravishankar S, Sia CL, Viswanathan P, Mohanty P, Dandona P (2007) Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J Clin Endocrinol Metab 92(11):4476–4479

    Article  CAS  Google Scholar 

  87. Aljada A, Mohanty P, Ghanim H, Abdo T, Tripathy D, Chaudhuri A, Dandona P (2004) Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. Am J Clin Nutr 79(4):682–690

    CAS  Google Scholar 

  88. Dhindsa S, Tripathy D, Mohanty P, Ghanim H, Syed T, Aljada A, Dandona P (2004) Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-kappaB in mononuclear cells. Metabolism 53(3):330–334

    Article  CAS  Google Scholar 

  89. Thiel G, Rössler OG (2014) Resveratrol stimulates AP-1-regulated gene transcription. Mol Nutr Food Res 58(7):1402–1413

    Article  CAS  Google Scholar 

  90. Peluso I, Morabito G, Urban L, Ioannone F, Serafini M (2012) Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets 12(4):351–360

    Article  CAS  Google Scholar 

  91. Bataille AM, Manautou JE (2012) Nrf2: a potential target for new therapeutics in liver disease. Clin Pharmacol Ther 92(3):340–348

    Article  CAS  Google Scholar 

  92. Hardwick RN, Fisher CD, Canet MJ, Lake AD, Cherrington NJ (2010) Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos 38(12):2293–2301

    Article  CAS  Google Scholar 

  93. Perlemuter G, Davit-Spraul A, Cosson C, Conti M, Bigorgne A, Paradis V, Corre MP, Prat L, Kuoch V, Basdevant A, Pelletier G, Oppert JM, Buffet C (2005) Increase in liver antioxidant enzyme activities in non-alcoholic fatty liver disease. Liver Int 25(5):946–953

    Article  CAS  Google Scholar 

  94. Flores-Mateo G, Elosua R, Rodriguez-Blanco T, Basora-Gallisà J, Bulló M, Salas-Salvadó J, Martínez-González MÁ, Estruch R, Corella D, Fitó M, Fiol M, Arós F, Gómez-Gracia E, Subirana I, Lapetra J, Ruiz-Gutiérrez V, Sáez GT, Covas MI, PREDIMED Study Investigators (2014) Oxidative stress is associated with an increased antioxidant defense in elderly subjects: a multilevel approach. PLoS One 9(9):e105881. doi:10.1371/journal.pone.0105881

    Article  Google Scholar 

  95. Cederbaum AI (2006) Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J Gastroenterol Hepatol 21(Suppl 3):S22–S25

    Article  CAS  Google Scholar 

  96. Jhang JJ, Cheng YT, Ho CY, Yen GC (2014) Monosodium urate crystals trigger Nrf2- and heme oxygenase-1-dependent inflammation in THP-1 cells. Cell Mol Immunol. doi:10.1038/cmi.2014.65

    Google Scholar 

  97. Na HK, Surh YJ (2008) Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 46(4):1271–1278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Claudio Andrew Gobbi for English review of the manuscript.

Conflict of interest

Authors declare no personal or financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maura Palmery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peluso, I., Manafikhi, H., Reggi, R. et al. Effects of red wine on postprandial stress: potential implication in non-alcoholic fatty liver disease development. Eur J Nutr 54, 497–507 (2015). https://doi.org/10.1007/s00394-015-0877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0877-2

Keywords

Navigation