Skip to main content

Advertisement

Log in

Genome-wide copy number changes and CD133 expression characterized distinct subset of colon polyps: differentiation between incidental polyps and cancer-associated polyps

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Colorectal polyps are generally believed to be the precursors of colorectal cancers (CRC); however, the proportion and speed of progression differed widely in different subsets of polyps. Using microarray-based comparative genomic hybridization (aCGH) platform and CD133 immunostaining, we characterized colon polyps according to their association with CRC that developed in the same individual.

Patients and methods

aCGH was performed to unveil genomic changes in 18 cancer-synchronous polyps (CSP), and 9 cancer-preceding polyps (CPP), together with their corresponding cancers and 16 cases of incidental polyps (IP), were examined for comparison. aCGH profiles were analyzed to determine the clonal relationship (CR) between the paired adenoma and carcinoma. CD133 expressions in each subset of polyps were quantified by immunohistochemistry (IHC) staining.

Results

Progressive genomic changes were observed from IP, CSP/CPP to CRC; they encompass an entire chromosomal region in IP and sub-chromosomal region in CSP/CPP and CRC. CR analyses demonstrated that 50 % of CSP and 67 % of CPP were clonally related to the concurrent or later developed carcinomas, respectively. The CD133 expression levels were significantly higher in CSP/CPP than those in IP (P < 0.0001) and even higher in CSP/CPP that were clonally related to their corresponding carcinomas than CSP/CPP that were unrelated (P < 0.05).

Conclusions

There were more genomic changes in CSP/CPP than IP; more than half of the CSP/CPP were clonally related to the corresponding carcinomas. Genomic changes at sub-chromosomal regions and/or high CD133 expression were associated with CSP/CPP and highlighted their carcinogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen CJ, You SL, Lin LH, Hsu WL, Yang YW (2002) Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol 32(Suppl):S66–S81

    Article  PubMed  Google Scholar 

  2. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  CAS  PubMed  Google Scholar 

  3. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  PubMed  Google Scholar 

  4. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532

    Article  CAS  PubMed  Google Scholar 

  5. Hoglund M, Gisselsson D, Hansen GB, Sall T, Mitelman F, Nilbert M (2002) Dissecting karyotypic patterns in colorectal tumors: two distinct but overlapping pathways in the adenoma-carcinoma transition. Cancer Res 62(20):5939–5946

    CAS  PubMed  Google Scholar 

  6. Molatore S, Ranzani GN (2004) Genetics of colorectal polyps. Tech Coloproctol 8(Suppl 2):s240–s242

    Article  PubMed  Google Scholar 

  7. Postma C, Hermsen MA, Coffa J, Baak JP, Mueller JD, Mueller E, Bethke B, Schouten JP, Stolte M, Meijer GA (2005) Chromosomal instability in flat adenomas and carcinomas of the colon. J Pathol 205(4):514–521

    Article  CAS  PubMed  Google Scholar 

  8. Sedivy R, Wolf B, Kalipciyan M, Steger GG, Karner-Hanusch J, Mader RM (2000) Genetic analysis of multiple synchronous lesions of the colon adenoma-carcinoma sequence. Br J Cancer 82(7):1276–1282. doi:10.1054/bjoc.1999.1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Harris AL, Neal DE (1992) Bladder cancer—field versus clonal origin. N Engl J Med 326(11):759–761

    Article  CAS  PubMed  Google Scholar 

  10. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6(5):963–968

    Article  CAS  PubMed  Google Scholar 

  11. Wistuba II, Behrens C, Milchgrub S, Bryant D, Hung J, Minna JD, Gazdar AF (1999) Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 18(3):643–650. doi:10.1038/sj.onc.1202349

    Article  CAS  PubMed  Google Scholar 

  12. Jang SJ, Chiba I, Hirai A, Hong WK, Mao L (2001) Multiple oral squamous epithelial lesions: are they genetically related? Oncogene 20(18):2235–2242. doi:10.1038/sj.onc.1204311

    Article  CAS  PubMed  Google Scholar 

  13. Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D (2000) Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25(2):144–146. doi:10.1038/75985

    Article  CAS  PubMed  Google Scholar 

  14. Garcia MJ, Pole JC, Chin SF, Teschendorff A, Naderi A, Ozdag H, Vias M, Kranjac T, Subkhankulova T, Paish C, Ellis I, Brenton JD, Edwards PA, Caldas C (2005) A 1 Mb minimal amplicon at 8p11-12 in breast cancer identifies new candidate oncogenes. Oncogene 24(33):5235–5245. doi:10.1038/sj.onc.1208741

    Article  CAS  PubMed  Google Scholar 

  15. Sonoda I, Imoto I, Inoue J, Shibata T, Shimada Y, Chin K, Imamura M, Amagasa T, Gray JW, Hirohashi S, Inazawa J (2004) Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma. Cancer Res 64(11):3741–3747. doi:10.1158/0008-5472.CAN-04-0172

    Article  CAS  PubMed  Google Scholar 

  16. Massion PP, Kuo WL, Stokoe D, Olshen AB, Treseler PA, Chin K, Chen C, Polikoff D, Jain AN, Pinkel D, Albertson DG, Jablons DM, Gray JW (2002) Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res 62(13):3636–3640

    CAS  PubMed  Google Scholar 

  17. Kuuselo R, Savinainen K, Azorsa DO, Basu GD, Karhu R, Tuzmen S, Mousses S, Kallioniemi A (2007) Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. Cancer Res 67(5):1943–1949. doi:10.1158/0008-5472.CAN-06-3387

    Article  CAS  PubMed  Google Scholar 

  18. Marchio A, Meddeb M, Pineau P, Danglot G, Tiollais P, Bernheim A, Dejean A (1997) Recurrent chromosomal abnormalities in hepatocellular carcinoma detected by comparative genomic hybridization. Genes Chromosomes Cancer 18(1):59–65. doi:10.1002/(SICI)1098-2264(199701)18:1<59::AID-GCC7>3.0.CO;2–0

    Article  CAS  PubMed  Google Scholar 

  19. Kusano N, Shiraishi K, Kubo K, Oga A, Okita K, Sasaki K (1999) Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features. Hepatology 29(6):1858–1862. doi:10.1002/hep.510290636

    Article  CAS  PubMed  Google Scholar 

  20. Shiraishi K, Kusano N, Okita S, Oga A, Okita K, Sasaki K (1999) Genetic aberrations detected by comparative genomic hybridization in biliary tract cancers. Oncology 57(1):42–49

    Article  CAS  PubMed  Google Scholar 

  21. Hui AB, Lo KW, Leung SF, Teo P, Fung MK, To KF, Wong N, Choi PH, Lee JC, Huang DP (1999) Detection of recurrent chromosomal gains and losses in primary nasopharyngeal carcinoma by comparative genomic hybridisation. Int J Cancer 82(4):498–503. doi:10.1002/(SICI)1097-0215(19990812)82:4<498::AID-IJC5>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  22. Wong N, Lai P, Lee SW, Fan S, Pang E, Liew CT, Sheng Z, Lau JW, Johnson PJ (1999) Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: relationship to disease stage, tumor size, and cirrhosis. Am J Pathol 154(1):37–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Horst D, Kriegl L, Engel J, Jung A, Kirchner T (2009) CD133 and nuclear beta-catenin: the marker combination to detect high risk cases of low stage colorectal cancer. Eur J Cancer 45(11):2034–2040. doi:10.1016/j.ejca.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  24. Horst D, Kriegl L, Engel J, Kirchner T, Jung A (2008) CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 99(8):1285–1289. doi:10.1038/sj.bjc.6604664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hermsen M, Postma C, Baak J, Weiss M, Rapallo A, Sciutto A, Roemen G, Arends JW, Williams R, Giaretti W, De Goeij A, Meijer G (2002) Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 123(4):1109–1119

    Article  CAS  PubMed  Google Scholar 

  26. Fan YS, Jayakar P, Zhu H, Barbouth D, Sacharow S, Morales A, Carver V, Benke P, Mundy P, Elsas LJ (2007) Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat 28(11):1124–1132. doi:10.1002/humu.20581

    Article  CAS  PubMed  Google Scholar 

  27. Chen YJ, Yeh SH, Chen JT, Wu CC, Hsu MT, Tsai SF, Chen PJ, Lin CH (2000) Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma. Gastroenterology 119(2):431–440

    Article  CAS  PubMed  Google Scholar 

  28. Kuukasjarvi T, Karhu R, Tanner M, Kahkonen M, Schaffer A, Nupponen N, Pennanen S, Kallioniemi A, Kallioniemi OP, Isola J (1997) Genetic heterogeneity and clonal evolution underlying development of asynchronous metastasis in human breast cancer. Cancer Res 57(8):1597–1604

    CAS  PubMed  Google Scholar 

  29. Baudis M, Cleary ML (2001) Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics 17(12):1228–1229

    Article  CAS  PubMed  Google Scholar 

  30. Gaiser T, Camps J, Meinhardt S, Wangsa D, Nguyen QT, Varma S, Dittfeld C, Kunz-Schughart LA, Kemmerling R, Becker MR, Heselmeyer-Haddad K, Ried T (2011) Genome and transcriptome profiles of CD133-positive colorectal cancer cells. Am J Pathol 178(4):1478–1488. doi:10.1016/j.ajpath.2010.12.036

    Article  PubMed Central  PubMed  Google Scholar 

  31. He QJ, Zeng WF, Sham JS, Xie D, Yang XW, Lin HL, Zhan WH, Lin F, Zeng SD, Nie D, Ma LF, Li CJ, Lu S, Guan XY (2003) Recurrent genetic alterations in 26 colorectal carcinomas and 21 adenomas from Chinese patients. Cancer Genet Cytogenet 144(2):112–118

    Article  CAS  PubMed  Google Scholar 

  32. Camps J, Armengol G, del Rey J, Lozano JJ, Vauhkonen H, Prat E, Egozcue J, Sumoy L, Knuutila S, Miro R (2006) Genome-wide differences between microsatellite stable and unstable colorectal tumors. Carcinogenesis 27(3):419–428. doi:10.1093/carcin/bgi244

    Article  CAS  PubMed  Google Scholar 

  33. Grady WM (2004) Genomic instability and colon cancer. Cancer Metastasis Rev 23(1–2):11–27

    Article  CAS  PubMed  Google Scholar 

  34. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312. doi:10.1038/nrc2627

    Article  CAS  PubMed  Google Scholar 

  35. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, Forni G, Eils R, Fehm T, Riethmuller G, Klein CA (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13(1):58–68. doi:10.1016/j.ccr.2007.12.003

    Article  PubMed  Google Scholar 

  36. Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C, Siegmund A, Scheunemann P, Schurr P, Knoefel WT, Verde PE, Reichelt U, Erbersdobler A, Grau R, Ullrich A, Izbicki JR, Klein CA (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13(5):441–453. doi:10.1016/j.ccr.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  37. Weckermann D, Polzer B, Ragg T, Blana A, Schlimok G, Arnholdt H, Bertz S, Harzmann R, Klein CA (2009) Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J Clin Oncol 27(10):1549–1556. doi:10.1200/JCO.2008.17.0563

    Article  PubMed  Google Scholar 

  38. Dakubo GD, Jakupciak JP, Birch-Machin MA, Parr RL (2007) Clinical implications and utility of field cancerization. Cancer Cell Int 7:2. doi:10.1186/1475-2867-7-2

    Article  PubMed Central  PubMed  Google Scholar 

  39. Tabor MP, Brakenhoff RH, van Houten VM, Kummer JA, Snel MH, Snijders PJ, Snow GB, Leemans CR, Braakhuis BJ (2001) Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin Cancer Res Off J Am Assoc Cancer Res 7(6):1523–1532

    CAS  Google Scholar 

  40. Tabor MP, Brakenhoff RH, Ruijter-Schippers HJ, Van Der Wal JE, Snow GB, Leemans CR, Braakhuis BJ (2002) Multiple head and neck tumors frequently originate from a single preneoplastic lesion. Am J Pathol 161(3):1051–1060. doi:10.1016/S0002-9440(10)64266-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Aivado M, Gynes M, Gorelov V, Schmidt WU, Roher HD, Goretzki PE (2000) “Field cancerization”—an additional phenomenon in development of colon tumors? K-ras codon 12 mutations in normal colonic mucosa of patients with colorectal neoplasms. Chirurg 71(10):1230–1234, discussion 1234–1235

    Article  CAS  PubMed  Google Scholar 

  42. Leedham SJ, Graham TA, Oukrif D, McDonald SA, Rodriguez-Justo M, Harrison RF, Shepherd NA, Novelli MR, Jankowski JA, Wright NA (2009) Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology 136(2):542–550. doi:10.1053/j.gastro.2008.10.086, e546

    Article  PubMed  Google Scholar 

  43. Pallini R, Ricci-Vitiani L, Montano N, Mollinari C, Biffoni M, Cenci T, Pierconti F, Martini M, De Maria R, Larocca LM (2010) Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer. doi:10.1002/cncr.25581

    PubMed  Google Scholar 

  44. Kojima M, Ishii G, Atsumi N, Nishizawa Y, Saito N, Ochiai A (2010) CD133 expression in rectal cancer after preoperative chemoradiotherapy. Cancer Sci 101(4):906–912. doi:10.1111/j.1349-7006.2009.01478.x

    Article  CAS  PubMed  Google Scholar 

  45. Elsaba TM, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, McCart A, Silver AR, Tomlinson IP, Ilyas M (2010) The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One 5(5), e10714. doi:10.1371/journal.pone.0010714

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K, Mori M (2008) Cancer stem cells and chemoradiation resistance. Cancer Sci 99(10):1871–1877. doi:10.1111/j.1349-7006.2008.00914.x

    Article  CAS  PubMed  Google Scholar 

  47. Liu JM, Mao BY, Hong S, Liu YH, Wang XJ (2008) The postoperative brain tumour stem cell (BTSC) niche and cancer recurrence. Adv Ther 25(5):389–398. doi:10.1007/s12325-008-0050-x

    Article  PubMed  Google Scholar 

  48. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M (2008) Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med 14(10):450–460. doi:10.1016/j.molmed.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  49. Horst D, Scheel SK, Liebmann S, Neumann J, Maatz S, Kirchner T, Jung A (2009) The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol 219(4):427–434. doi:10.1002/path.2597

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi S, Kamiyama T, Tomaru U, Ishizu A, Shida T, Osaka M, Sato Y, Saji Y, Ozaki M, Todo S (2010) Frequency and pattern of expression of the stem cell marker CD133 have strong prognostic effect on the surgical outcome of colorectal cancer patients. Oncol Rep 24(5):1201–1212

    Article  PubMed  Google Scholar 

  51. Artells R, Moreno I, Diaz T, Martinez F, Gel B, Navarro A, Ibeas R, Moreno J, Monzo M (2010) Tumour CD133 mRNA expression and clinical outcome in surgically resected colorectal cancer patients. Eur J Cancer 46(3):642–649. doi:10.1016/j.ejca.2009.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Li-Li Li and Felicia Hsin-Yu Jiang for language revision of the manuscript. This work was supported by research grants MOST 104-2319-B-010-001, NSC97-3112-B-075-002, NSC98-3112-B-010-023-B4, and NSC 97-2320-B-010-024-MY3 from National Science Council and Aim for the Top University Plan from the Ministry of Education, Taiwan.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeng-Kai Jiang.

Additional information

Chih-Yung Yang, Ju-Yu Tseng and Chian-Feng Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 435 kb)

Fig. S2

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, CY., Tseng, JY., Chen, CF. et al. Genome-wide copy number changes and CD133 expression characterized distinct subset of colon polyps: differentiation between incidental polyps and cancer-associated polyps. Int J Colorectal Dis 30, 1617–1626 (2015). https://doi.org/10.1007/s00384-015-2319-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-015-2319-2

Keywords

Navigation