Skip to main content

Advertisement

Log in

Is maintenance of the ileocecal valve important to the intestinal adaptation mechanisms in a weaning rat model of short bowel?

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the role of maintenance of the ileocecal valve (ICV) in intestinal adaptation mechanisms, in a weaning rat experimental model of short bowel.

Methods

Forty animals were operated on to produce short bowel syndrome. They were divided into five groups: maintenance (MV) or resection of ICV (RV), kill after 4 days (MV4 and RV4) or 21 days (MV21 and RV21), and a control group (21-day-old rats). Body weights, small bowel and colon lengths and diameters, villus heights, crypt depths, lamina propria and muscle layer thickness, as well as the apoptosis index of villi and crypts and expression of pro- and anti-apoptotic genes, were studied.

Results

Preservation of the ICV promoted increased weight gain (p = 0.0001) and intestinal villus height after 21 days; crypt depth was higher in comparison to controls. It was verified a higher expression of Ki-67 in bowel villi and crypts (p = 0.018 and p = 0.015, respectively) in RV4 group and a higher expression in bowel villi of MV4 group animals (p = 0.03). The maintenance of ICV promoted late increased expression of the anti-apoptotic gene Bcl-XL in the colon (p = 0.043, p = 0.002, p = 0.01).

Conclusion

The maintenance of the ICV led to positive changes in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wester T, Lilja HE, Stenström P et al (2017) Absent ileocecal valve predicts the need for repeated step in children. Surgery 161:818–822

    Article  Google Scholar 

  2. Gutierrez IM, Kang KH, Jaksic T (2011) Neonatal short bowel syndrome. Semin Fetal Neonatal Med 16:157–163

    Article  Google Scholar 

  3. Diamanti A, Basso MS, Castro M et al (2008) Irreversible intestinal failure: prevalence and prognostic factors. J Pediatr Gastroenterol Nutr 47:450–457

    Article  Google Scholar 

  4. Petit LM, Girard D, Ganousse-Mazeron S et al (2016) Weaning off prognosis factors of home parenteral nutrition for children with primary digestive disease. J Pediatr Gastroenterol Nutr 62:462–468

    Article  CAS  Google Scholar 

  5. Goulet O, Ruemmele F, Lacaille F et al (2004) Irreversible intestinal failure. J Pediatr Gastroenterol Nutr 38:250–269

    Article  Google Scholar 

  6. Stanger JD, Oliveira C, Blackmore C et al (2013) The impact of multi-disciplinary intestinal rehabilitation programs on the outcome of pediatric patients with intestinal failure: a systematic review and meta-analysis. J Pediatr Surg 48:983–992

    Article  Google Scholar 

  7. Spencer A, Neaga A, West B et al (2005) Pediatric short bowel syndrome: redefining predictors of success. Ann Surg 242:403–409

    PubMed  PubMed Central  Google Scholar 

  8. Khan FA, Squires RH, Litman HJ et al (2015) Pediatric intestinal failure consortium. Predictors of enteral autonomy in children with intestinal failure: a multicenter cohort study. J Pediatr 167:29–34.e1

    Article  Google Scholar 

  9. Goulet OJ, Revillon Y, Jan D et al (1991) Neonatal short bowel syndrome. J Pediatr 119:18–23

    Article  CAS  Google Scholar 

  10. Quigley EM, Borody TJ, Phillips SF et al (1984) Motility of the terminal ileum and ileocecal sphincter in healthy humans. Gastroenterology 87:857–866

    CAS  PubMed  Google Scholar 

  11. Quirós-Tejeira RE, Ament ME, Reyen L et al (2004) Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: a 25-year experience. J Pediatr 145:157–163

    Article  Google Scholar 

  12. Pérez-Arana G, Camacho-Ramírez A, Segundo-Iglesias MC et al (2015) A surgical model of short bowel syndrome induces a long-lasting increase in pancreatic beta-cell mass. Histol Histopathol 30:479–487

    PubMed  Google Scholar 

  13. Hebiguchi T, Mezaki Y, Morii M et al (2015) Massive bowel resection upregulates the intestinal mRNA expression levels of cellular retinol-binding protein II and apolipoprotein A-IV and alters the intestinal vitamin A status in rats. Int J Mol Med 35:724–730

    Article  CAS  Google Scholar 

  14. Sukhotnik I, Berkowitz D, Dorfman T et al (2016) The role of the BMP signaling cascade in regulation of stem cell activity following massive small bowel resection in a rat. Pediatr Surg Int 32:169–174

    Article  CAS  Google Scholar 

  15. Sukhotnik I, Shahar YB, Pollak Y et al (2018) The role of intermediate filaments in maintaining integrity and function of intestinal epithelial cells after massive bowel resection in a rat. Pediatr Surg Int 34:217–225

    Article  CAS  Google Scholar 

  16. Onishi S, Kaji T, Yamada W et al (2016) The administration of ghrelin improved hepatocellular injury following parenteral feeding in a rat model of short bowel syndrome. Pediatr Surg Int 32:1165–1171

    Article  Google Scholar 

  17. Lai SW, de Heuvel E, Wallace LE et al (2017) Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats. PLoS One 12:e0181453

    Article  Google Scholar 

  18. Yang Y, Zheng T, Zhou J et al (2018) Bile salt dependent lipase promotes intestinal adaptation in rats with massive small bowel resection. Biosci Rep. https://doi.org/10.1042/BSR20180077 (Epub ahead of print; pii: BSR20180077)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang Q, Kock ND (2010) Intestinal adaptation following massive ileocecal resection in 20-day-old weanling rats. J Pediatr Gastroenterol Nutr 50:16–21

    Article  Google Scholar 

  20. Yang Q, Lan T, Chen Y et al (2012) Dietary fish oil increases fat absorption and fecal bile acid content without altering bile acid synthesis in 20-d-old weanling rats following massive ileocecal resection. Pediatr Res 72:38–42

    Article  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  22. Schurink M, Hulscher JB, Nieuwenhuijs VB et al (2014) A surgical perspective of the outcome of a multidisciplinary intestinal rehabilitation program for children with short bowel syndrome in The Netherlands. Transpl Proc 46:2102–2108

    Article  CAS  Google Scholar 

  23. Grant D, Abu-Elmagd K, Mazariegos G et al (2015) Intestinal Transplant Association. Intestinal transplant registry report: global activity and trends. Am J Transpl 15:210–219

    Article  CAS  Google Scholar 

  24. de Aro Braz MJ, Corbi LE, Tannuri ACA et al (2017) Analysis of the reversibility of biliary cirrhosis in young rats submitted to biliary obstruction. J Pediatr Surg 53:1408–1413

    Article  Google Scholar 

  25. Tannuri AC, Tannuri U, Coelho MC et al (2007) Experimental models of hepatectomy and liver regeneration using newborn and weaning rats. Clinics (Sao Paulo) 62:757–762

    Article  Google Scholar 

  26. Demehri FR, Stephens L, Herrman E et al (2015) Enteral autonomy in pediatric short bowel syndrome: predictive factors one year after diagnosis. J Pediatr Surg 50:131–135

    Article  Google Scholar 

  27. Gillingham MB, Dahly EM, Carey HV et al (2000) Differential jejunal and colonic adaptation due to resection and IGF-I in parenterally fed rats. Am J Physiol Gastrointest Liver Physiol 278:G700–G709

    Article  CAS  Google Scholar 

  28. Xu JM, Zhong YS, Jin DY et al (2008) Effect of dietary fiber and growth hormone on colonic adaptation in short bowel syndrome treated by enteral nutrition. World J Surg 32:1832–1839

    Article  Google Scholar 

  29. Goulet O, Colomb-Jung V, Joly F (2009) Role of the colon in short bowel syndrome and intestinal transplantation. J Pediatr Gastroenterol Nutr 48(Suppl 2):S66–S71

    Article  Google Scholar 

  30. Diamanti A, Basso MS, Panetta F et al (2012) Colon and intestinal adaptation in children with short bowel syndrome. J Parenter Enteral Nutr 36:501

    Article  Google Scholar 

  31. Longshore SW, Wakeman D, McMellen M et al (2009) Bowel resection induced intestinal adaptation: progress from bench to bedside. Minerva Pediatr 61:239–251 (review)

    CAS  PubMed  Google Scholar 

  32. Roulis M, Flavell RA (2016) Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 92:116–131

    Article  CAS  Google Scholar 

  33. Sangild PT, Ney DM, Sigalet DL et al (2014) Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 307:G1147–G1168

    Article  CAS  Google Scholar 

  34. Martin CA, Bernabe KQ, Taylor JA et al (2008) Resection-induced intestinal adaptation and the role of enteric smooth muscle. J Pediatr Surg 43:1011–1017

    Article  Google Scholar 

  35. Fiore NF, Ledniczky G, Liu Q et al (1998) Comparison of interleukin-11 and epidermal growth factor on residual small intestine after massive small bowel resection. J Pediatr Surg 33:24–29

    Article  CAS  Google Scholar 

  36. Knott AW, Erwin CR, Profitt SA et al (2003) Localization of post resection EGF receptor expression using laser capture microdissection. J Pediatr Surg 38:440–445

    Article  Google Scholar 

  37. Coelho MC, Tannuri U, Tannuri AC et al (2007) Expression of interleukin 6 and apoptosis-related genes in suckling and weaning rat models of hepatectomy and liver regeneration. J Pediatr Surg 42:613–619

    Article  Google Scholar 

  38. Welters CF, Piersma FE, Hockenbery DM et al (2000) The role of apoptosis during intestinal adaptation after small bowel resection. J Pediatr Surg 35:20–24

    Article  CAS  Google Scholar 

Download references

Funding

No fundings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uenis Tannuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Research involving human and/or animal participants

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, G.G., Tannuri, A.C.A., Rotondo, Í.G. et al. Is maintenance of the ileocecal valve important to the intestinal adaptation mechanisms in a weaning rat model of short bowel?. Pediatr Surg Int 34, 1215–1224 (2018). https://doi.org/10.1007/s00383-018-4333-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-018-4333-2

Keywords

Navigation