Skip to main content

Advertisement

Log in

Surgical perspectives regarding application of biomaterials for the management of large congenital diaphragmatic hernia defects

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

This review focuses on the surgical viewpoints on patch repairs in neonates with large congenital diaphragmatic hernia defects. The main focus  is on the various biomaterials that have been employed to date with regard to their source of origins, degradation properties as well as tissue integration characteristics. Further focus  is on the present knowledge on patch integration when biomaterials are placed in the diaphragmatic defect. The review will also look at the present evidence on the biomechanical characteristics of the most commonly used biomaterials and compares these materials to diaphragmatic tissue to offer more  insight on the present practice of patch repairs in large defects. Since tissue engineering and regenerative medicine has offered another dimension to diaphragmatic replacement, a detailed overview of this technology will be undertaken with regard to cell sourcing, scaffolds, in vitro versus in vivo implants as well as quality of tissue produced, to explore the limitations and the feasibility facing the scientific community in its clinical implementation of skeletal muscle-engineered tissue beyond laboratory research for diaphragmatic replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arensman RM, Bambini DA, Chiu B (2005) Congenital diaphragmatic hernia and eventration. In: Ashcraft KW, Holcomb GW III, Patrick Murphy J (eds) Pediatric surgery, 4th edn. Elsevier Saunders, Philadelphia, pp 304–323

    Google Scholar 

  2. The Congenital Diaphragmatic Hernia Study Group (2007) Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics 120:e651–657

    Article  Google Scholar 

  3. Newman KD, Anderson KD, Van Meurs K, Parson S, Loe W, Short B (1990) Extracorporeal membrane oxygenation and congenital diaphragmatic hernia: should any infant be excluded? J Pediatr Surg 25:1048–1052

    Article  CAS  PubMed  Google Scholar 

  4. Stolar C, Dillon P, Reyes C (1998) Selective use of extracorporeal membrane oxygenation in the management of congenital diaphragmatic hernia. J Pediatr Surg 23:207–211

    Article  Google Scholar 

  5. Clark HC, Hardin WD, Hirschl RB et al (1998) Current surgical management of congenital diaphragmatic hernia: a report from the congenital diaphragmatic hernia study group. J Pediatr Surg 33:1004–1009

    Article  CAS  PubMed  Google Scholar 

  6. Moss RL, Chen CM, Harrison MR (2001) Prosthetic patch durability in congenital diaphragmatic hernia: a long term follow-up study. J Pediatr Surg 36:152–154

    Article  CAS  PubMed  Google Scholar 

  7. Vanamo K, Peltonen J, Rintala R et al (1996) Chest wall and spinal deformities in adults with congenital diaphragmatic defects. J Pediatr Surg 31:851–854

    Article  CAS  PubMed  Google Scholar 

  8. Tsao K, Lally KP (2008) The Congenital Diaphragmatic Hernia Study Group: voluntary international registry. Semin Pediatr Surg 17:90–97

    Article  PubMed  Google Scholar 

  9. Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532

    Article  CAS  PubMed  Google Scholar 

  10. Billroth T (1924) The medical sciences in the German Universities: a study, in history of civilization. (trans: Welch WH) Macmillan, New York

  11. Chowbey P (2012) Endoscopic repair of abdominal wall hernias, 2nd edn. Byword books, Delhi

    Google Scholar 

  12. Greenberg JA. Clark RM (2009) Advances in suture material for obstetric and gynecologic surgery. Rev Obstet Gynecol 2:146–158

    PubMed  PubMed Central  Google Scholar 

  13. LeBlanc KA (2003) Laparoscopic hernia surgery an operative guide, 1st edn. CRC Press, New Orleans

    Book  Google Scholar 

  14. Usher FC, Fries JG, Ochsner JL, Tuttle LL (1959) Marlex mesh, a new plastic mesh for replacing tissue defects. II. A new plastic mesh for replacing tissue defects. AMA Arch Surg 78:138–145

    Article  CAS  PubMed  Google Scholar 

  15. Usher FC, Hill JR, Ochsner JL (1959) Hernia repair with Marlex mesh. A comparison of techniques. Surgery 46:718–728

    CAS  PubMed  Google Scholar 

  16. Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick VJ (2002) Impact of polymer pore size on the interface scar formation in a rat model. Surg Res 103:208–214

    Article  CAS  Google Scholar 

  17. Elliott MP, Juler GL (1979) Comparison of Marlex mesh and microporous teflon sheets when used for hernia repair in the experimental animal. Am J Surg 137:342–344

    Article  CAS  PubMed  Google Scholar 

  18. Murphy JL, Freeman JB, Dionne PG (1989) Comparison of Marlex and Gore-Tex to repair abdominal wall defects in the rat. Can J Surg 32:244–247

    CAS  PubMed  Google Scholar 

  19. Sher W, Pollack D, Paulides CA, Matsumoto T (1980) Repair of abdominal wall defects: Gore-Tex vs. Marlex graft. Am Surg 46:618–623

    CAS  PubMed  Google Scholar 

  20. Lamb JP, Vitale T, Kaminski DL (1983) Comparative evaluation of synthetic meshes used for abdominal wall replacement. Surgery 93:643–648

    CAS  PubMed  Google Scholar 

  21. Pans A, Pierard GE (1992) A comparison of intraperitoneal prostheses for the repair of abdominal muscular wall defects in rats. Eur Surg Res 24:54–60

    Article  CAS  PubMed  Google Scholar 

  22. Simmermacher RK, Van Der Lei B, Schakenraad JM, Bleichrodt RP (1991) Improved tissue ingrowth and anchorage of expanded polytetrafluoroethylene by perforation: an experimental study in the rat. Biomaterials 12:22–24

    Article  CAS  PubMed  Google Scholar 

  23. Bellon JM, Contreras LA, Sabater C, Bujan J (1997) Pathologic and clinical aspects of repair of large incisional hernias after implant of a polytetrafluoroethylene prosthesis. World J Surg 1:402–406

    Article  Google Scholar 

  24. Utrera Gonzalez A, De La Portilla De Juan F, Carranza Albarran G (1999) Large incisional hernia repair using intraperitoneal placement of expanded polytetrafluoroethylene. Am J Surg 177:291–293

    Article  CAS  PubMed  Google Scholar 

  25. Devine C, Hons B, McCollum C (2001) Heparin bonded Dacron or polytetrafluorethylene for femoropopliteal bypass grafting: a multicenter trial. J Vasc Surg 33:533

    Article  CAS  PubMed  Google Scholar 

  26. Hernández-Richter T, Schardey HM, Wittmann F et al (2003) Rifampin and triclosan but not silver is effective in preventing bacterial infection of vascular dacron graft material. Eur J Vasc Endovasc Surg 26:550–557

    Article  PubMed  Google Scholar 

  27. Schneider F, O’Connor S, Becquemin JP (2008) Efficacy of collagen silver coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model. Ann Vasc Surg 22:815–821

    Article  PubMed  Google Scholar 

  28. Mitchell IC, Garcia NM, Barber R, Ahmad N, Hicks BA, Fischer AC (2008) Permacol: a potential biologic patch alternative in congenital diaphragmatic hernia repair. J Pediatr Surg 43:2161–2164

    Article  PubMed  Google Scholar 

  29. Zogbi L (2008) The use of biomaterials to treat abdominal hernias. In: Pignatello R (ed) Biomaterials applications for nanomedicine, vol 18, 1st edn. InTech, Rijeka, Croatia, pp 359–382

    Google Scholar 

  30. Bekdash B, Singh B, Lakhoo K (2009) Recurrent late complications following congenital diaphragmatic hernia repair with prosthetic patches: a case series. J Med Case Rep 3:7237

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Der Lei B, Bleichrodt RP, Simmermacher RK, Van Schilfgaarde R (1989) Expanded polytetrafluoroethylene patch for the repair of large abdominal wall defects. Br J Surg 76:803–805

    Article  PubMed  Google Scholar 

  32. Simmermacher RK, Schakenraad JM, Bleichrodt RP (1994) Reherniation after repair of the abdominal wall with expanded polytetrafluoroethylene. J Am Coll Surg 178:613–616

    CAS  PubMed  Google Scholar 

  33. Mayer S, Decaluwe H, Ruol M, Manodoro S, Kramer M, Till H, Deprest J (2015) Diaphragm repair with a novel cross-linked collagen biomaterial in a growing rabbit model. PLoS One 10:e0132021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chaliha C, Khalid U, Campagna L, Digesu GA, Ajay B, Khullar V (2006) SIS graft for anterior vaginal wall prolapse repair—a case-controlled study. Int Urogynecol J Pelvic Floor Dysfunct 17:492–497

    Article  PubMed  Google Scholar 

  35. Chen CCG, Ridgeway B, Paraiso MFR (2007) Biologic grafts and synthetic meshes in pelvic reconstructive surgery. Clin Obstet Gynecol 50:383–411

    Article  PubMed  Google Scholar 

  36. Trabuco EC, Klingele CJ, Gebhart JB (2007) Xenograft use in reconstructive pelvic surgery: a review of the literature. Int Urogynecol J Pelvic Floor Dysfunct 18:555–563

    Article  PubMed  Google Scholar 

  37. Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg 76:1096–1100

    Article  PubMed  Google Scholar 

  38. Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, Voytik SL (1996) Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 60:107–114

    Article  CAS  PubMed  Google Scholar 

  39. Prevel CD, Eppley BL, Summerlin DJ, Jackson JR, McCarty M, Badylak SF (1995) Small intestinal submucosa: utilization for repair of rodent abdominal wall defects. Ann Plast Surg 35:374–380

    Article  CAS  PubMed  Google Scholar 

  40. Badylak S, Kokini K, Tullius B, Whitson B (2001) Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res 99:282–287

    Article  CAS  PubMed  Google Scholar 

  41. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103:190–202

    Article  PubMed  Google Scholar 

  42. Bellon JM, Garcia-Carranza A, Jurado F, Garcia-Honduvilla N, Carrera-San Martin A, Bujan J (2001) Peritoneal regeneration after implant of a composite prosthesis in the abdominal wall. World J Surg 25:147–152

    Article  CAS  PubMed  Google Scholar 

  43. Oliver RF, Barker H, Cooke A, Grant RA (1982) Dermal collagen implants. Biomaterials 3:38–40

    Article  CAS  PubMed  Google Scholar 

  44. Abdi R, Smith RN, Makhlouf L et al (2002) The role of CC chemokine receptor 5 (CCR5) in islet allograft rejection. Diabetes 51:2489–2495

    Article  CAS  PubMed  Google Scholar 

  45. Fedoseyeva EV, Kishimoto K, Rolls HK et al (2002) Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J Immunol 169:1168–1174

    Article  CAS  PubMed  Google Scholar 

  46. Badylak SF (1993) Small intestinal submucosa (SIS): a biomaterial conducive to smart tissue remodeling. In: Bell E (ed) Tissue engineering: current perspectives. Burkhauser, Cambridge, pp 179–189

    Chapter  Google Scholar 

  47. Zheng F, Lin Y, Verbeken E et al (2004) Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol 191:1961–1970

    Article  CAS  PubMed  Google Scholar 

  48. Sternschuss G, Ostergard DR, Patel H (2012) Post-implantation alterations of polypropylene in the human. J Urol 188:27–32

    Article  CAS  PubMed  Google Scholar 

  49. Klinge U, Junge K, Stumpf M, Ap AP, Klosterhalfen B (2002) Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J Biomed Mater Res 63:129–136

    Article  CAS  PubMed  Google Scholar 

  50. Bringman S, Wollert S, Osterberg J, Smedberg S, Granlund H, Heikkinen TJ (2006) Three-year results of a randomized clinical trial of lightweight or standard polypropylene mesh in Lichtenstein repair of primary inguinal hernia. Br J Surg 93:1056–1059

    Article  CAS  PubMed  Google Scholar 

  51. Tyrell J, Silberman H, Chandrasoma P, Niland J, Shull J (1989) Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet 168:227–232

    CAS  PubMed  Google Scholar 

  52. Law NW, Ellis H (1991) A comparison of polypropylene mesh and expanded polytetrafluoroethylene patch for the repair of contaminated abdominal wall defects—an experimental study. Surgery 109:652–655

    CAS  PubMed  Google Scholar 

  53. Bellon JM, Bujan J, Contreras L, Hernando A (1995) Integration of biomaterials implanted into abdominal wall: process of scar formation and macrophage response. Biomaterials 16:381–387

    Article  CAS  PubMed  Google Scholar 

  54. Gao M, Han J, Tian J, Yang K (2010) Vypro II mesh for inguinal hernia repair: a meta analysis of randomized controlled trials. Ann Surg 251:838–842

    Article  PubMed  Google Scholar 

  55. Cobb WS, Kercher KW, Heniford BT (2005) The argument for lightweight polypropylene mesh in hernia repair. Surg Innov 12:63–69

    Article  PubMed  Google Scholar 

  56. Jacob BP, Hogle NJ, Durak E, Kim T, Fowler DL (2007) Tissue ingrowth and bowel adhesion formation in an animal comparative study: polypropylene versus proceed versus parietex composite. Surg Endosc 21:629–633

    Article  CAS  PubMed  Google Scholar 

  57. Junge K, Binnebosel M, Rosch R et al (2009) Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surg Endosc 23:327–333

    Article  PubMed  Google Scholar 

  58. Binnebösel M, Klink CD, Otto J, Conze J, Jansen PL, Anurov M, Schumpelick V, Junge K (2010) Impact of mesh positioning on foreign body reaction and collagenous ingrowth in a rabbit model of open incisional hernia repair. Hernia 14:71–77

    Article  PubMed  Google Scholar 

  59. Bellón JM, Bujan J, Contreras L, Hernando A, Jurado F (1994) Macrophage response to experimental implantation of poly-propylene prostheses. Eur Surg Res 26:46–53

    PubMed  Google Scholar 

  60. Aramayo ALG, Lopes Filho Gde J, Barbosa Cde A, Amaral Vda F, Costa LA (2013) Abdominal wall healing in incisional hernia using different biomaterials in rabbits. Acta Cir Bras 28:307–316

    Article  PubMed  Google Scholar 

  61. Zogbi L, Portella AO, Trindade MR, Trindade EN (2010) Retraction and fibroplasia in a polypropylene prosthesis: experimental study in rats. Hernia 14:291–298

    Article  CAS  PubMed  Google Scholar 

  62. Campbell JB, Bassett CAL, Robertson JB (1958) Clinical use of freeze-dried human dura mater. J Neurosurg 15:207–214

    Article  CAS  PubMed  Google Scholar 

  63. Jarrell MA, Malinin TI, Averette HE et al (1987) Human dura mater allografts in repair of pelvic floor and abdominal wall defects. Obstet Gynecol 70:280–285

    CAS  PubMed  Google Scholar 

  64. Saxena AK, Hülskamp G, Schleef J, Schaarschmidt K, Harms E, Willital GH (2002) Gastroschisis: a 15-year, single-center experience. Pediatr Surg Int 18:420–424

    Article  PubMed  Google Scholar 

  65. Saxena A, Willital GH (2002) Omphalocele: clinical review and surgical experience using dura patch grafts. Hernia 6:73–78

    Article  CAS  PubMed  Google Scholar 

  66. Laurentaci G, Occhioogrosso M, Favoino B (1982) In vitro inhibition of rat serum complement activity by an extract of lyophilized human dura mater. J Neurosurg Sci 26:219–221

    CAS  PubMed  Google Scholar 

  67. Asselmeier MA, Caspari RB (1993) A review of allograft processing and sterilization techniques and their role in transmission of HIV. Am J Sports Med 21:170–175

    Article  CAS  PubMed  Google Scholar 

  68. Janssen RS, Schonberger LB (1991) Creutzfeldt–Jakob Disease from allogeneic dura: a review of risks and safety. J Oral Maxillofac Surg 49:274–275

    Article  Google Scholar 

  69. Cantore G, Guidetti B, Delfini R (1987) Neurosurgical use of human dura mater sterilized by gamma rays and stored in alcohol: long-term results. J Neurosurg 66:93–95

    Article  CAS  PubMed  Google Scholar 

  70. Cali I, Cohen ML, Haïk S, Parchi P, Giaccone G, Collins SJ et al (2018) Iatrogenic Creutzfeldt–Jakob disease with Amyloid-β pathology: an international study. Acta Neuropathol Commun 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bendavid R (2001) Abdominal wall hernias: principles and management. In Bendavid R (ed) Springer-Verlag, Berlin

    Chapter  Google Scholar 

  72. Waler C, Sigbritt K (2002) Assessment of thermal and thermo-oxidative stability of multi-extruded recycled PP, HDPE and a blend thereof. Polym Degrad Stab 78:385–391

    Article  Google Scholar 

  73. Wood AM, Cozad MJ, Grant DA, Ostdiek MA, Bachman SL, Grant SA (2013) Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient. J Mater Sci Mater Med 24:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gonzalez R, Fugate K, McClusky D 3rd et al (2005) Relationship between tissue ingrowth and mesh contraction. World J Surg 29:1038–1043

    Article  PubMed  Google Scholar 

  75. Morris-Stiff GJ, Hughes LE (1998) The outcomes of non-absorbable mesh placed within the abdominal cavity: literature review and clinical experience. J Am Coll Surg 186:352–367

    Article  CAS  PubMed  Google Scholar 

  76. Riepe G, Loos J, Imig H et al (1997) Long-term in vivo alterations of polyester vascular grafts in humans. Eur J Vasc Endovasc Surg 13:540–548

    Article  CAS  PubMed  Google Scholar 

  77. Melman L et al (2011) Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia 15:157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mimura KKO, Moraes AR, Miranda AC, Greco R, Ansari T, Paul Sibbons P et al (2016) Mechanisms underlying heterologous skin scaffold-mediated tissue remodeling. Sci Rep 6:35074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sung HW, Chang WH, Ma CY, Lee MH (2003) Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 64:427–438

    Article  PubMed  CAS  Google Scholar 

  80. Greco K, Francis L, Somasundaram M et al (2015) Characterisation of porcine dermis scaffolds decellularised using a novel non-enzymatic method for biomedical applications. J Biomater App 30:239–253

    Article  CAS  Google Scholar 

  81. Jones JA, Chang DT, Meyerson H et al (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res Part A 83:585–596

    Article  CAS  Google Scholar 

  82. Luttikhuizen DT, Dankers PYW, Harmsen MC, Van Luyn MJA (2007) Material dependent differences in inflammatory gene expression by giant cells during the foreign body reaction. J Biomed Mater Res Part A 83:879–886

    Article  CAS  Google Scholar 

  83. Courtman DW, Errett BF, Wilson GJ (2001) The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J Biomed Mater Res 55:576–586

    Article  CAS  PubMed  Google Scholar 

  84. Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW (2004) Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials 25:3541–3552

    Article  CAS  PubMed  Google Scholar 

  85. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14:1835–1842

    Article  CAS  PubMed  Google Scholar 

  86. Breuing KH, Warren SM (2005) Immediate bilateral breast reconstruction with implants and inferolateral AlloDerm slings. Ann Plast Surg 55:232–239

    Article  CAS  PubMed  Google Scholar 

  87. Zienowicz RJ, Karacaoglu E (2007) Implant-based breast reconstruction with allograft. Plast Reconstr Surg 120:373–381

    Article  CAS  PubMed  Google Scholar 

  88. Sbitany H, Sandeen SN, Amalfi AN et al (2009) Acellular dermis-assisted prosthetic breast reconstruction versus complete submuscular coverage: a head-to-head comparison of outcomes. Plast Reconstr Surg 124:1735–1740

    Article  CAS  PubMed  Google Scholar 

  89. Gamboa-Bobadilla GM (2006) Implant breast reconstruction using acellular dermal matrix. Ann Plast Surg 56:22–25

    Article  CAS  PubMed  Google Scholar 

  90. Butterfield JL (2013) 440 consecutive immediate, implant-based, single-surgeon breast reconstructions in 281 patients: a comparison of early outcomes and costs between SurgiMend fetal bovine and AlloDerm human cadaveric acellular dermal matrices. Plast Reconstr Surg 131:940–951

    Article  CAS  PubMed  Google Scholar 

  91. Dieterich M, Paepke S, Zwiefel K et al (2013) Implant-based breast reconstruction using a titanium-coated polypropylene mesh (TiLOOP Bra): a multicenter study of 231 cases. Plast Reconstr Surg 132:8e–19e

    Article  CAS  PubMed  Google Scholar 

  92. United States Pharmacopeial Convention (2002) 1211: sterility testing. United States pharmacopeia and national formulary (USP25-NF20). United States Pharmacopeial Convention, Rockville

    Google Scholar 

  93. Centers for Disease Control and Prevention (CDC) (2002) Update: allograft-associated bacterial infections: United States, 2002. MMWR Morb Mortal Wkly Rep 51:207–210

    Google Scholar 

  94. Liu AS, Kao HK, Reish RG et al (2011) Postoperative complications in prosthesis-based breast reconstruction using acellular dermal matrix. Plast Reconstr Surg 127:1755–1762

    Article  CAS  PubMed  Google Scholar 

  95. Antony AK, McCarthy CM, Cordeiro PG et al (2010) Acellular human dermis implantation in 153 immediate two-stage tissue expander breast reconstructions: determining the incidence and significant predictors of complications. Plast Reconstr Surg 125:1606–1614

    Article  CAS  PubMed  Google Scholar 

  96. Bluebond-Langner R, Keifa ES, Mithani S et al (2008) Recurrent abdominal laxity following interpositional human acellular dermal matrix. Ann Plast Surg 60:76–80

    Article  CAS  PubMed  Google Scholar 

  97. Lee EI, Chike-Obi CJ, Gonzalez P et al (2009) Abdominal wall repair using human acellular dermal matrix: a follow-up study. Am J Surg 198:650–657

    Article  PubMed  Google Scholar 

  98. Mazzini DL, Mantovani M (1999) Fechamento da parede abdominal com afastamento parcial das bordas da aponeurose utilizando sobreposição com telas de Vicryl ou Marlex em ratos. Acta Cir Bras 14:28–34

    Article  Google Scholar 

  99. Bellon JM, Contreras LA, Sabater C, Bujan J (1997) Pathologic and clinical aspects of repair of large incisional hernias after implant of a polytetrafluoroethylene prosthesis. World J Surg 21:402–406

    Article  CAS  PubMed  Google Scholar 

  100. Schumpelick VE, Nyhus LME (2004) Meshes: benefits and risks. In Schumpelick LN (ed) Springer-Verlag, Berlin

    Chapter  Google Scholar 

  101. Maurer PK, Mc Donald JV (1985) Vicryl (Polyglactin 910) mesh as a dural substitute. J Neurosurg 63:448–452

    Article  CAS  PubMed  Google Scholar 

  102. Meddings N, Scott R, Bullock R, French DA, Hide TA, Gorham SD (1992) Collagen vicryl—a new dural prothesis. Acta Neurochir (Wien) 117:53–58

    Article  CAS  Google Scholar 

  103. Ramadwar RH, Carachi R, Young DG (1997) Collagen-coated Vicryl mesh is not a suitable material for repair of diaphragmatic defects. J Pediatr Surg 32:1708–1710

    Article  CAS  PubMed  Google Scholar 

  104. Al-Iede MM, Karpelowsky J, Fitzgerald DA (2016) Recurrent diaphragmatic hernia: modifiable and non-modifiable risk factors. Pediatr Pulmonol 51:394–401

    Article  PubMed  Google Scholar 

  105. Riehle KJ, Magnuson DK, Waldhausen JH (2007) Low recurrence rate after Gore-Tex/Marlex composite patch repair for posterolateral congenital diaphragmatic hernia. J Pediatr Surg 42:1841–1844

    Article  PubMed  Google Scholar 

  106. Jancelewicz T, Vu LT, Keller RL, Bratton B, Lee H, Farmer D, Harrison M, Miniati D, Mackenzie T, Hirose S, Nobuhara K (2010) Long-term surgical outcomes in congenital diaphragmatic hernia: observations from a single institution. J Pediatr Surg 45:155–160

    Article  PubMed  Google Scholar 

  107. Anderson JM (2001) Biological response to materials. Annu Rev Mater Res 31:81–110

    Article  CAS  Google Scholar 

  108. Santambrogio L (2015) Biomaterials in regenerative medicine and the immune system, 1st edn. Springer International Publishing Switzerland, Cham

    Book  Google Scholar 

  109. Tang L, Ugarova TP, Plow EF, Eaton JW (1996) Molecular determinates of acute inflammatory response to biomaterials. J Clin Investig 97:1329–13234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Busuttil SJ, Ploplis VA, Castellino FJ, Tang L, Eaton JW, Plow EF (2004) A central role for plasminogen in the inflammatory response to biomaterials. J Thromb Haemost 2:1798–1805

    Article  CAS  PubMed  Google Scholar 

  111. Earle DB, Mark LA (2008) Prosthetic material in inguinal hernia repair: how do i choose? Surg Clin N Am 88:179–201

    Article  PubMed  Google Scholar 

  112. Ramshaw B, Bachman S (2007) Surgical materials for ventral hernia repair. Gen Surg News 34:1–15

    Google Scholar 

  113. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100

    Article  CAS  PubMed  Google Scholar 

  114. Schumpelick V, Fitzgibbons RJ (2010) Hernia repair sequelae, 1st edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  115. Saxena AK, Biro E, Sommer G, Ainoedhofer H, Kuess A, Holzapfel G (2011) EuroSTEC EU project—biomechanical investigation in diaphragmatic patch repairs. In: European Union FP6-Life Science Project 37409 report. Brussels

  116. Saxena AK (2014) Dome-shaped patch offers optimal biomechanics for repair of large defects in congenital diaphragmatic hernia. Acta Medica Medianae 53:42–45

    Article  Google Scholar 

  117. Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11:275–281

    CAS  PubMed  Google Scholar 

  118. Dennis R, Kosnik P, Gilbert M (2001) Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280:C288–C295

    Article  CAS  PubMed  Google Scholar 

  119. Liu G, Mac Gabhann F, Popel A (2012) Effects of fiber type and size on the heterogeneity of oxygen distribution in exercising skeletal muscle. PLoS ONE 7:e44375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Corona B, Ward C, Baker H, Walters T, Christ G (2014) Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 20:705–715

    CAS  PubMed  Google Scholar 

  121. Aärimaa V, Kääriäinen M, Vaittinen S, Tanner J, Järvinen T, Best T et al (2004) Restoration of myofiber continuity after transection injury in the rat soleus. Neuromuscul Disord 14:421–428

    Article  PubMed  Google Scholar 

  122. Rouwkema J, Gibbs S, Lutolf M, Martin I, Vunjak-Novakovic G, Malda J (2011) In vitro platforms for tissue engineering: implications for basic research and clinical translation. J Tissue Eng Regen Med 5:e164–167

    Article  CAS  Google Scholar 

  123. Karande T, Ong J, Agrawal C (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728–1743

    Article  PubMed  Google Scholar 

  124. Griffith C, Miller C, Sainson R, Calvert J, Jeon N, Hughes C et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11:257–266

    Article  CAS  PubMed  Google Scholar 

  125. Radisic M, Yang L, Boublik J, Cohen R, Langer R, Freed L et al (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286:H507-516

    Article  Google Scholar 

  126. Miller J, Stevens K, Yang M, Baker B, Nguyen D-HT, Cohen D et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kolesky D, Truby R, Gladman A, Busbee T, Homan K, Lewis J (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130

    Article  CAS  PubMed  Google Scholar 

  128. Leong M, Toh J, Du C, Narayanan K, Lu H, Lim T et al (2013) Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 4:2353

    Article  PubMed  Google Scholar 

  129. Murphy M, Lawson J, Mathew S, Hutcheson D, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Koffler J, Kaufman-Francis K, Shandalov Y, Yulia S, Egozi D, Dana E et al (2011) Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci USA 108:14789–14794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T et al (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7:850–858

    Article  CAS  PubMed  Google Scholar 

  132. Yamato M, Akiyama Y, Kobayashi J, Yang J, Kikuchi A, Okano T (2007) Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog Polym Sci 32:1123–1133

    Article  CAS  Google Scholar 

  133. Kilarski W, Samolov B, Petersson L, Kvanta A, Gerwins P (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15:657–664

    Article  CAS  PubMed  Google Scholar 

  134. Boerckel J, Uhrig B, Willett N, Huebsch N, Guldberg R (2011) Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc Natl Acad Sci USA 108:E674–680

    Article  Google Scholar 

  135. Cheng G, Liao S, Kit Wong H, Lacorre D, di Tomaso E, Au P et al (2011) Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood 118:4740–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Saxena AK, Kofler K, Ainödhofer H, Höllwarth ME (2009) Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg 13:1037–1043

    Article  PubMed  Google Scholar 

Download references

Funding

This research was partly funded by the European Union within the 6th Framework Program (EuroSTEC; LSHC-CT-2006-037409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amulya K. Saxena.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

All international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A.K. Surgical perspectives regarding application of biomaterials for the management of large congenital diaphragmatic hernia defects. Pediatr Surg Int 34, 475–489 (2018). https://doi.org/10.1007/s00383-018-4253-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-018-4253-1

Keywords

Navigation