Skip to main content

Porcine Acellular Lung Matrix in Wound Healing and Hernia Repair

  • Chapter
  • First Online:
Chronic Wounds, Wound Dressings and Wound Healing

Abstract

The introduction of synthetic polypropylene mesh in hernia repair has improved the results of herniorrhaphy. To introduce mesh is to introduce foreign bodies that can impact the human body and may lead to inflammation, infection, fibrosis, calcification, seromas, or adhesions to vital organs such as the bowel. Bioprosthetic meshes, generated from source organs source such as the dermis or small intestine, have emerged as commercially available products for use in hernia repair. The authors discuss the ideal mesh, tissue engineering and hernia repair, bioprosthetic mesh and use in the contaminated field, and porcine acellular lung matrix (PALM) as a natural scaffold capable of cell attachment, while maintaining cell viability was investigated as a novel prosthetic for repair and has demonstrated enhanced incorporation and short-term mechanical stability in a chronic ventral incisional hernia model with bridging repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poulose BK, Shelton J, Phillips S, Moore D, Nealon W, Penson D, Beck W, Holzman MD (2012) Epidemiology and cost of ventral hernia repair: making the case for hernia research. Hernia 16(2):179–183

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough CJ, Ko TC, Kao LS, Nguyen MT, Holihan JL, Alawadi Z, Nguyen DH, Flores JR, Arita NT, Roth JS, Liang MK (2015) Development and validation of a risk stratification score for ventral incisional hernia after abdominal surgery: hernia expectation rates in intra-abdominal surgery (The HERNIA Project). J Am Coll Surg 220(4):405–413

    PubMed  PubMed Central  Google Scholar 

  3. Martindale RG, Deveney CW (2013) Preoperative risk reduction: strategies to optimize outcomes. Surg Clin North Am 93(5):1041–1055

    PubMed  Google Scholar 

  4. FitzGerald JF, Kumar AS (2014) Biologic versus synthetic mesh reinforcement: what are the pros and cons? Clin Colon Rectal Surg 27(4):140–148

    PubMed  PubMed Central  Google Scholar 

  5. Garcia A, Baldoni A (2015) Complex ventral hernia repair with a human acellular dermal matrix and component separation: a case series. Ann Med Surg (Lond) 4(3):271–278

    Google Scholar 

  6. Beadles CA, Meagher AD, Charles AG (2015) Trends in emergent hernia repair in the United States. JAMA Surg 150(3):194–200

    PubMed  Google Scholar 

  7. Basile F, Biondi A, Donati M (2013) Surgical approach to abdominal wall defects: history and new trends. Int J Surg 11(Suppl 1):S20–S23

    PubMed  Google Scholar 

  8. Primatesta P, Goldacre MJ (1996) Inguinal hernia repair: incidence of elective and emergency surgery, readmission and mortality. Int J Epidemiol 25(4):835–839

    CAS  PubMed  Google Scholar 

  9. Chand M, On J, Bevan K, Mostafid H, Venkatsubramaniam AK (2012) Mesh erosion following laparoscopic incisional hernia repair. Hernia 16(2):223–226

    CAS  PubMed  Google Scholar 

  10. Gandhi D, Marcin S, Xin Z, Asha B, Kaswala D, Zamir B (2011) Chronic abdominal pain secondary to mesh erosion into cecum following incisional hernia repair: a case report and literature review. Ann Gastroenterol 24(4):321–324

    PubMed  PubMed Central  Google Scholar 

  11. Collage RD, Rosengart MR (2010) Abdominal wall infections with in situ mesh. Surg Infect 11(3):311–318

    Google Scholar 

  12. Kuehnert N, Kraemer NA, Otto J, Donker HC, Slabu I, Baumann M, Kuhl CK, Klinge U (2012) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26(5):1468–1475

    PubMed  Google Scholar 

  13. Schoenmaeckers EJ, van der Valk SB, van den Hout HW, Raymakers JF, Rakic S (2009) Computed tomographic measurements of mesh shrinkage after laparoscopic ventral incisional hernia repair with an expanded polytetrafluoroethylene mesh. Surg Endosc 23(7):1620–1623

    PubMed  Google Scholar 

  14. Campanelli G, Bertocchi V, Cavalli M, Bombini G, Biondi A, Tentorio T, Sfeclan C, Canziani M (2013) Surgical treatment of chronic pain after inguinal hernia repair. Hernia 17(3):347–353

    CAS  PubMed  Google Scholar 

  15. Aroori S, Spence RAJ (2007) Chronic pain after hernia surgery—an informed consent issue. Ulster Med J 76(3):136–140

    PubMed  PubMed Central  Google Scholar 

  16. Starling JR, Harms BA, Schroeder ME, Eichman PL (1987) Diagnosis and treatment of genitofemoral and ilioinguinal entrapment neuralgia. Surgery 102(4):581–586

    CAS  PubMed  Google Scholar 

  17. Rastegarpour A, Cheung M, Vardhan M, Ibrahim MM, Butler CE, Levinson H (2016) Surgical mesh for ventral incisional hernia repairs: Understanding mesh design. Plast Surg (Oakv) 24(1):41–50

    Google Scholar 

  18. Bellows CF, Alder A, Helton WS (2006) Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Expert Rev Med Devices 3(5):657–675

    PubMed  Google Scholar 

  19. Franklin ME Jr, Gonzalez JJ Jr, Glass JL (2004) Use of porcine small intestinal submucosa as a prosthetic device for laparoscopic repair of hernias in contaminated fields: 2-year follow-up. Hernia 8(3):186–189

    PubMed  Google Scholar 

  20. Cevasco M, Itani KM (2012) Ventral hernia repair with synthetic, composite, and biologic mesh: characteristics, indications, and infection profile. Surg Infect 13(4):209–215

    Google Scholar 

  21. Bringman S, Conze J, Cuccurullo D, Deprest J, Junge K, Klosterhalfen B, Parra-Davila E, Ramshaw B, Schumpelick V (2010) Hernia repair: the search for ideal meshes. Hernia 14(1):81–87

    CAS  PubMed  Google Scholar 

  22. Gandolfo L, Donati M, Palmeri S, Brancato G, Donati A (2006) Late cutaneous fistula after inguinal hernia repair. A case report. Ann Ital Chir 77(5):447–450

    PubMed  Google Scholar 

  23. Klinge U, Klosterhalfen B, Müller M, Schumpelick V (1999) Foreign body reaction to meshes used for the repair of abdominal wall hernias. Eur J Surg 165(7):665–673

    CAS  PubMed  Google Scholar 

  24. Bowman KL, Birchard SJ, Bright RM (1998) Complications associated with the implantation of polypropylene mesh in dogs and cats: a retrospective study of 21 cases (1984-1996). J Am Anim Hosp Assoc 34(3):225–233

    CAS  PubMed  Google Scholar 

  25. Aguirre DA, Santosa AC, Casola G, Sirlin CB (2005) Abdominal wall hernias: imaging features, complications, and diagnostic pitfalls at multi–detector row CT. Radiographics 25(6):1501–1520

    PubMed  Google Scholar 

  26. Brown C, Finch J (2010) Which mesh for hernia repair? Ann R Coll Surg Engl 92(4):272–278

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Junge K, Klinge U, Rosch R, Mertens PR, Kirch J, Klosterhalfen B, Lynen P, Schumpelick V (2004) Decreased collagen type I/III ratio in patients with recurring hernia after implantation of alloplastic prostheses. Langenbeck’s Arch Surg 389(1):17–22

    Google Scholar 

  28. Klosterhalfen B, Junge K, Klinge U (2005) The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices 2(1):103–117

    PubMed  Google Scholar 

  29. Cavallaro A, Lo Menzo E, Di Vita M, Zanghì A, Cavallaro V, Veroux PF, Cappellani A (2010) Use of biological meshes for abdominal wall reconstruction in highly contaminated fields. World J Gastroenterol 16(15):1928–1933

    PubMed  PubMed Central  Google Scholar 

  30. Bilsel Y, Abci I (2012) The search for ideal hernia repair; mesh materials and types. Int J Surg 10(6):317–321

    PubMed  Google Scholar 

  31. Ferzoco SJ (2013) A systematic review of outcomes following repair of complex ventral incisional hernias with biologic mesh. Int Surg 98(4):399–408

    PubMed  PubMed Central  Google Scholar 

  32. Baumann DP, Butler CE (2012) bioprosthetic mesh in abdominal wall reconstruction. Semin Plast Surg 26(1):18–24

    PubMed  PubMed Central  Google Scholar 

  33. Holton LH 3rd, Kim D, Silverman RP, Rodriguez ED, Singh N, Goldberg NH (2005) Human acellular dermal matrix for repair of abdominal wall defects: review of clinical experience and experimental data. J Long-Term Eff Med Implants 15(5):547–558

    PubMed  Google Scholar 

  34. Primus FE, Harris HW (2013) A critical review of biologic mesh use in ventral hernia repairs under contaminated conditions. Hernia 17(1):21–30

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Deeken CR, Melman L, Jenkins ED, Greco SC, Frisella MM, Matthews BD (2011) Histologic and biomechanical evaluation of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral incisional hernia repair. J Am Coll Surg 212(5):880–888

    PubMed  PubMed Central  Google Scholar 

  36. Misra S, Raj PK, Tarr SM, Treat RC (2008) Results of AlloDerm use in abdominal hernia repair. Hernia 12(3):247–250

    CAS  PubMed  Google Scholar 

  37. Novitsky YW, Rosen MJ (2012) The biology of biologics: basic science and clinical concepts. Plast Reconstr Surg 130(5 Suppl 2):9s–17s

    CAS  PubMed  Google Scholar 

  38. Sandor M, Leamy P, Assan P, Hoonjan A, Huang LT, Edwards M, Zuo W, Li H, Xu H (2017) Relevant In vitro predictors of Human Acellular Dermal Matrix-associated inflammation and capsule formation in a nonhuman primate subcutaneous tissue expander model. Eplasty 17:e1

    PubMed  PubMed Central  Google Scholar 

  39. Zenn MR, Salzberg CA (2016) A direct comparison of alloderm-ready to use (RTU) and DermACELL in immediate breast implant reconstruction. Eplasty 16:e23

    PubMed  PubMed Central  Google Scholar 

  40. Weiss SR, Tenney JM, Thomson JL, Anthony CT, Chiu ES, Friedlander PL, Woltering EA (2010) The effect of AlloDerm on the initiation and growth of human neovessels. Laryngoscope 120(3):443–449

    CAS  PubMed  Google Scholar 

  41. Newman MI, Samson MC, Berho M (2009) AlloDerm in breast reconstruction: 2 years later. Plast Reconstr Surg 123(6):205e–206e

    CAS  PubMed  Google Scholar 

  42. Romain B, Story F, Meyer N, Delhorme JB, Brigand C, Rohr S (2016) Comparative study between biologic porcine dermal meshes: risk factors of postoperative morbidity and recurrence. J Wound Care 25(6):320–325

    CAS  PubMed  Google Scholar 

  43. Butler CE, Burns NK, Campbell KT, Mathur AB, Jaffari MV, Rios CN (2010) Comparison of cross-linked and non-cross-linked porcine acellular dermal matrices for ventral hernia repair. J Am Coll Surg 211(3):368–376

    PubMed  Google Scholar 

  44. Broyles JM, Abt NB, Sacks JM, Butler CE (2013) Bioprosthetic tissue matrices in complex abdominal wall reconstruction. Plast Reconstr Surg Glob Open 1(9):e91

    PubMed  Google Scholar 

  45. Patel KM, Albino FP, Nahabedian MY, Bhanot P (2013) Critical analysis of Strattice performance in complex abdominal wall reconstruction: intermediate-risk patients and early complications. Int Surg 98(4):379–384

    PubMed  PubMed Central  Google Scholar 

  46. Garvey PB, Giordano SA, Baumann DP, Liu J, Butler CE (2017) Long-term outcomes after abdominal wall reconstruction with Acellular Dermal Matrix. J Am Coll Surg 224(3):341–350

    PubMed  Google Scholar 

  47. Li J, Ren N, Qiu J, Jiang H, Zhao H, Wang G, Boughton RI, Wang Y, Liu H (2013) Carbodiimide crosslinked collagen from porcine dermal matrix for high-strength tissue engineering scaffold. Int J Biol Macromol 61:69–74

    PubMed  Google Scholar 

  48. Butler CE (2006) The role of bioprosthetics in abdominal wall reconstruction. Clin Plast Surg 33(2):199–211

    PubMed  Google Scholar 

  49. Dieterich M (2013) Biological matrices and synthetic meshes used in implant-based breast. Geburtshilfe Frauenheilkd 73(11):1100–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernandez-Moure JS, Van Eps JL, Peterson LE, Shirkey BA, Menn ZK, Cabrera FJ, Karim A, Tasciotti E, Weiner BK, Ellsworth WA 4th (2017) Cross-linking of porcine acellular dermal matrices negatively affects induced neovessel formation using platelet-rich plasma in a rat model of hernia repair. Wound Repair Regen 25(1):98–108

    PubMed  Google Scholar 

  51. Parker DM, Armstrong PJ, Frizzi JD, North JH Jr (2006) Porcine dermal collagen (Permacol) for abdominal wall reconstruction. Curr Surg 63(4):255–258

    PubMed  Google Scholar 

  52. Lantz GC, Badylak SF, Coffey AC, Geddes LA, Blevins WE (1990) Small intestinal submucosa as a small-diameter arterial graft in the dog. J Investig Surg 3(3):217–227

    CAS  Google Scholar 

  53. Sandusky GE, Lantz GC, Badylak SF (1995) Healing comparison of small intestine submucosa and ePTFE grafts in the canine carotid artery. J Surg Res 58(4):415–420

    CAS  PubMed  Google Scholar 

  54. Beale EW, Hoxworth RE, Livingston EH, Trussler AP (2012) The role of biologic mesh in abdominal wall reconstruction: a systematic review of the current literature. Am J Surg 204(4):510–517

    PubMed  Google Scholar 

  55. Annor AH, Tang ME, Pui CL, Ebersole GC, Frisella MM, Matthews BD, Deeken CR (2012) Effect of enzymatic degradation on the mechanical properties of biological scaffold materials. Surg Endosc 26(10):2767–2778

    PubMed  PubMed Central  Google Scholar 

  56. Edelman DS (2002) Laparoscopic herniorrhaphy with porcine small intestinal submucosa: a preliminary study. JSLS 6(3):203–205

    PubMed  PubMed Central  Google Scholar 

  57. Petter-Puchner AH, Fortelny RH (2010) Use of porcine small intestine submucosa as a prosthetic material for laparoscopic hernia repair in infected and potentially contaminated fields: long-term follow up assessment; Surg Endosc. (2008) 22: 1941-1946. Surg Endosc 24(1):230–231

    PubMed  Google Scholar 

  58. James NL, Poole-Warren LA, Schindhelm K, Milthorpe BK, Mitchell RM, Mitchell RE, Howlett CR (1991) Comparative evaluation of treated bovine pericardium as a xenograft for hernia repair. Biomaterials 12(9):801–809

    CAS  PubMed  Google Scholar 

  59. Limpert JN, Desai AR, Kumpf AL, Fallucco MA, Aridge DL (2009) Repair of abdominal wall defects with bovine pericardium. Am J Surg 198(5):e60–e65

    PubMed  Google Scholar 

  60. Jin J, Rosen MJ, Blatnik J, McGee MF, Williams CP, Marks J, Ponsky J (2007) Use of acellular dermal matrix for complicated ventral hernia repair: does technique affect outcomes? J Am Coll Surg 205(5):654–660

    PubMed  Google Scholar 

  61. Kapan S, Kapan M, Goksoy E, Karabicak I, Oktar H (2003) Comparison of PTFE, pericardium bovine and fascia lata for repair of incisional hernia in rat model, experimental study. Hernia 7(1):39–43

    CAS  PubMed  Google Scholar 

  62. Gurrado A, Franco IF, Lissidini G, Greco G, De Fazio M, Pasculli A, Girardi A, Piccinni G, Memeo V, Testini M (2015) Impact of pericardium bovine patch (Tutomesh((R))) on incisional hernia treatment in contaminated or potentially contaminated fields: retrospective comparative study. Hernia 19(2):259–266

    CAS  PubMed  Google Scholar 

  63. Wang Y, Bao J, Wu X, Wu Q, Li Y, Zhou Y, Li L, Bu H (2016) Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep 6:24779

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hussein KH, Park KM, Kim HM, Teotia PK, Ghim JH, Woo HM (2015) Construction of a biocompatible decellularized porcine hepatic lobe for liver bioengineering. Int J Artif Organs 38(2):96–104

    CAS  PubMed  Google Scholar 

  65. Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK (2012) Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res 173(1):e11–e25

    CAS  PubMed  Google Scholar 

  66. Petro CC, Prabhu AS, Liu L, Majumder A, Anderson JM, Rosen MJ (2016) An in vivo analysis of Miromesh—a novel porcine liver prosthetic created by perfusion decellularization. J Surg Res 201(1):29–37

    PubMed  Google Scholar 

  67. Rosen MJ, Krpata DM, Ermlich B, Blatnik JA (2013) A 5-year clinical experience with single-staged repairs of infected and contaminated abdominal wall defects utilizing biologic mesh. Ann Surg 257(6):991–996

    PubMed  Google Scholar 

  68. Xu H, Wan H, Sandor M, Qi S, Ervin F, Harper JR, Silverman RP, McQuillan DJ (2008) Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair. Tissue Eng Part A 14(12):2009–2019

    CAS  PubMed  Google Scholar 

  69. Jernigan TW, Fabian TC, Croce MA, Moore N, Pritchard FE, Minard G, Bee TK (2003) Staged management of giant abdominal wall defects: acute and long-term results. Ann Surg 238(3):349–355

    PubMed  PubMed Central  Google Scholar 

  70. Itani KM, Rosen M, Vargo D, Awad SS, Denoto G 3rd, Butler CE, RICH Study Group (2012) Prospective study of single-stage repair of contaminated hernias using a biologic porcine tissue matrix: the RICH Study. Surgery 152(3):498–505

    PubMed  Google Scholar 

  71. Finan KR, Kilgore ML, Hawn MT (2009) Open suture versus mesh repair of primary incisional hernias: a cost-utility analysis. Hernia 13(2):173–182

    CAS  PubMed  Google Scholar 

  72. Nichols JE, Niles JA, Cortiella J (2012) Production and utilization of acellular lung scaffolds in tissue engineering. J Cell Biochem 113(7):2185–2192

    CAS  PubMed  Google Scholar 

  73. Chen F, Date H (2015) Update on ischemia-reperfusion injury in lung transplantation. Curr Opin Organ Transplant 20(5):515–520

    CAS  PubMed  Google Scholar 

  74. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933

    CAS  PubMed  Google Scholar 

  75. Nichols JE, Niles J, Riddle M, Vargas G, Schilagard T, Ma L, Edward K, La Francesca S, Sakamoto J, Vega S, Ogadegbe M, Mlcak R, Deyo D, Woodson L, McQuitty C, Lick S, Beckles D, Melo E, Cortiella J (2013) Production and assessment of decellularized pig and human lung scaffolds. Tissue Eng Part A 19(17–18):2045–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou H, Kitano K, Ren X, Rajab TK, Wu M, Gilpin SE, Wu T, Baugh L, Black LD, Mathisen DJ, Ott HC (2017) Bioengineering human lung grafts on porcine matrix. Ann Surg. In publication

    Google Scholar 

  77. Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC (2014) Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 33(3):298–308

    PubMed  Google Scholar 

  78. Salerno A, Guarnieri D, Iannone M, Zeppetelli S, Netti PA (2010) Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Tissue Eng Part A 16(8):2661–2673

    CAS  PubMed  Google Scholar 

  79. Guaccio A, Guarino V, Perez MA, Cirillo V, Netti PA, Ambrosio L (2011) Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences. Biotechnol Bioeng 108(8):1965–1976

    CAS  PubMed  Google Scholar 

  80. Nomi M, Atala A, Coppi PD, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Asp Med 23(6):463–483

    CAS  Google Scholar 

  81. Bramfeldt H, Sabra G, Centis V, Vermette P (2010) Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr Med Chem 17(33):3944–3967

    CAS  PubMed  Google Scholar 

  82. Campbell KT, Burns NK, Ensor J, Butler CE (2012) Metrics of cellular and vascular infiltration of human acellular dermal matrix in ventral hernia repairs. Plast Reconstr Surg 129(4):888–896

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fernandez-Moure JS, Van Eps JL, Rhudy JR, Cabrera FJ, Acharya GS, Tasciotti E, Sakamoto J, Nichols JE (2016) Porcine acellular lung matrix for wound healing and abdominal wall reconstruction: a pilot study. J Tissue Eng 7:2041731415626018

    PubMed  PubMed Central  Google Scholar 

  84. Schoenmaeckers EJ, Wassenaar EB, Raymakers JT, Rakic S (2010) Bulging of the mesh after laparoscopic repair of ventral and incisional hernias. JSLS 14(4):541–546

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph S. Fernandez-Moure M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chegireddy, V., Caplan, K.D., Fernandez-Moure, J.S. (2018). Porcine Acellular Lung Matrix in Wound Healing and Hernia Repair. In: Shiffman, M., Low, M. (eds) Chronic Wounds, Wound Dressings and Wound Healing. Recent Clinical Techniques, Results, and Research in Wounds, vol 6. Springer, Cham. https://doi.org/10.1007/15695_2017_102

Download citation

  • DOI: https://doi.org/10.1007/15695_2017_102

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10697-3

  • Online ISBN: 978-3-030-10698-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics