Skip to main content

Advertisement

Log in

Delayed vasculogenesis and impaired angiogenesis due to altered Ang-2 and VE-cadherin levels in the chick embryo model following exposure to cadmium

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Cadmium (Cd) causes chick embryo malformation and abnormal extra-embryonic vasculature. This study investigates the effect of Cd on vasculogenesis, quantifies extra-embryonic vascular development following exposure to cadmium acetate (CdAc).

Methods

After 48 or 60 h incubation, chicks were explanted and treated with 50 µl of 50 µM CdAc or equimolar sodium acetate. Embryos were again incubated then re-examined 4, 8, 24 and 48 h later. Gross morphological and histological manifestations were noted. Vasculogenesis was assessed by the development of omphalomesenteric vessels from blood islands. Sinus terminalis (ST), area vasculosa (AV), vessel density and embryo crown-rump length (CRL) were measured. Ang-2 and VE-cadherin mRNA expression was analysed by RT-PCR.

Results

Vasculogenesis was delayed on gross and histological examination. ST length, AV area, vessel density and CRL were significantly reduced in the Cd group. Ang-2 was increased 4 h after exposure to Cd, whereas VE-cadherin was reduced.

Conclusion

Cd exposure inhibits normal development of extra-embryonic vasculature in line with growth retardation of the chick embryo in association with altered expression of Ang-2 and VE-cadherin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AV:

Area vasculosa

EEM:

Extra-embryonic membrane

ST:

Sinus terminalis

Cd:

Cadmium

VV:

Vitelline vein

RT-PCR:

Reverse transcription polymerase chain reaction

References

  1. Allen WE, Wilson DJ (1993) Early embryonic angiogenesis in the chick area vasculosa. J Anat 183:579–585

    PubMed Central  PubMed  Google Scholar 

  2. Agency for Toxic Substances and Disease Registry (2008) Draft toxicological profile for cadmium. US Department of Health and Human Services, Atlanta

    Google Scholar 

  3. Bailey FR, Miller AM (1921) Textbook of embryology. Wood and Company, New York

    Google Scholar 

  4. Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo F, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    Article  CAS  PubMed  Google Scholar 

  6. Cheng SH, Chan PK, Wu RS (2001) The use of microangiography in detecting aberrant vasculature in zebrafish embryos exposed to cadmium. Aquat Toxicol 52:61–71

    Article  CAS  PubMed  Google Scholar 

  7. Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, Muller WA, Hicklin DJ, Bohlen P, Dejana E (2001) Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97:1679–1684

    Article  CAS  PubMed  Google Scholar 

  8. Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani MG, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald DM, Ward PA, Dejana E (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cullinane J, Bannigan JG, Thompson JM (2009) Cadmium teratogenesis in the chick: period of vulnerability using the early chick culture method, and prevention by divalent cations. Reprod Toxicol 28:335–341

    Article  CAS  PubMed  Google Scholar 

  10. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122

    Article  CAS  PubMed  Google Scholar 

  11. Doi T, Puri P, Bannigan J, Thompson JM (2012) EphB2/B3 gene expression is down-regulated during early embryogenesis in the cadmium0induced omphalocele chick model. J Pediatr Surg 47:920–924

    Article  PubMed  Google Scholar 

  12. Doi T, Puri P, Mccann A, Bannigan J, Thompson JM (2011) Epigenetic effect of cadmium on global de novo DNA hypomethylation in the cadmium-induced ventral body wall defect (VBWD) in the chick model. Toxicol Sci 120:475–480

    Article  CAS  PubMed  Google Scholar 

  13. Drake C (2003) Embryonic and adult vasculogenesis. Birth Defects Res Part C 69:73–82

    Article  CAS  Google Scholar 

  14. Drake CJ, Fleming PA (2000) Vasculogenesis in the day 6.5–9.5 mouse embryo. Blood 95:1671–1679

    CAS  PubMed  Google Scholar 

  15. Dugan JD, Lawton MT, Glaser B, Brem H (1991) A new technique for explantation and in vitro cultivation of chicken embryos. Anat Rec 229:125–128

    Article  PubMed  Google Scholar 

  16. Eklund L, Saharinen P (2013) Angiopoietin signaling in the vasculature. Exp Cell Res 319:1271–1280

    Article  CAS  PubMed  Google Scholar 

  17. Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328:18–26

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes RA, Costola-Souza C, Sarmento COP, Goncalves L, Favaron PO, Miglino MA (2012) Placental tissues as sources of stem cells. Open J Anim Sci 2:166–173

    Article  Google Scholar 

  19. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358

    Article  CAS  PubMed  Google Scholar 

  20. Friberg L, Piscator M, Nordberg GF, Kjellstrom T (1974) Cadmium in the environment. Cleveland, OH, CRC pess, p 94

    Google Scholar 

  21. Fujii T, Kuwano H (2010) Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In vitro cellular and developmental biology. Animal 46:487–491

    Google Scholar 

  22. Gheorghescu A, Tywoniuk B, Duess J, Buchete NV, Thompson J (2015) Exposure of chick embryos to cadmiuml changes the extra-embryonic vascular branching pattern and alters expression of VEGF-A and VEGF-R2. Toxicol Appl Pharmacol 269:79–88

    Article  Google Scholar 

  23. Giles JJ, Bannigan JG (1999) The effects of lithium on vascular development in the chick area vasculosa. J Anat 194:197–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gonzalez-Crussi F (1971) Vasculogenesis in the chick embryo. An ultrastructural study. Am J Anat 130:441–460

    Article  CAS  PubMed  Google Scholar 

  25. Greene AS (1998) Microvascular remodeling in hypertension: a role for the renin-angiotensin aldosterone system. Curr Concepts Hypertens 2:5

    Google Scholar 

  26. Halder A (2010) Amniotic band syndrome and/or limb body wall complex: split or lump. Clin Appl Clin Genet 3:7–15

    Article  PubMed  Google Scholar 

  27. Hamburger H, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    Article  CAS  PubMed  Google Scholar 

  29. Hoey MJ (1966) The effects of metallic salts on the histology and functioning of the rat testis. J Reprod Fertil 12:461–472

    Article  CAS  PubMed  Google Scholar 

  30. Hoper J, Jahn H (1995) Influence of environmental oxygen concentration on growth and vascular density of the area vasculosa in chick embryos. Int J Microcirc 15:186–192

    Article  CAS  Google Scholar 

  31. Hoyme HE, Higginbottom MC, Jones KL (1981) The vascular pathogenesis of gastroschisis: intrauterine interruption of the omphalomesenteric artery. J Pediatr Surg 98:228–231

    CAS  Google Scholar 

  32. IARC (1993) Beryllium, cadmium, mercury and exposure in the glass industry. IARC, Lyon

    Google Scholar 

  33. IARC (1993b) Monographs on the evaluation of carcinogenic risks to humans

  34. Ikeh-Tawari EP, Anetor JI, Charles-Davies MA (2013) Cadmium level in pregnancy, influence on neonatal birth weight and possible amelioration by some essential trace elements. Toxicol Int 20:108–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jing Y, Liu L, Jiang Y, Zhu Y, Guo NL, Barnett JB, Rojanasakul Y, Agani F, Jiang B (2012) Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant tranformation of human bronchial epithelial cells. Toxicol Sci 125:10–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kar AB, Das RP (1960) Testicular changes in rats after treatment with cadmium chloride. Acta Biol Medica Ger 5:153–173

    CAS  Google Scholar 

  37. Kim J, Lim W, Ko Y, Kwon H, Kim S, Kim O, Parl G, Choi H, Kim O (2012) The effects of cadmium on VEGF-mediated angiogenesis in HUVECs. J Appl Toxicol 32:342–349

    Article  CAS  PubMed  Google Scholar 

  38. Kirchner LM, Schmidt P, Gruber BS (1996) Quantification of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc Res 51:2–14

    Article  CAS  PubMed  Google Scholar 

  39. Kishimoto T, Fukuzawa Y, Abe M, Isobe M, Hashimoto M, Tada M (1991) Cadmium injury of cultured human vascular endothelial cells. Hum Cells 4:329–334

    CAS  Google Scholar 

  40. Kishimoto T, Oguri T, Ohno M, Matsubara K, Yamamoto K, Tada M (1994) Effect of cadmium (CdCl2) on cell proliferation and production of EDRF (endothelium-derived relaxing factor) by cultured human arterial andothelial cells. Arch Toxicol 68:555–559

    Article  CAS  PubMed  Google Scholar 

  41. Kishimoto T, Ueda D, Isobe M, Tada M (1996) Cadmium injuries tube formation by cultured human vascular endothelial cells. Hum Cell 9:244–250

    CAS  PubMed  Google Scholar 

  42. Lubinsky M (2014) A vascular and thrombotic model of gastroschisis. Am J Med Genet 164A:915–917

    Article  PubMed  Google Scholar 

  43. Mannino DM, Holguin F, Greves HM, Savage-Brown A, Stock AL, Jones RL (2004) Urinary cadmium levels predict lower lung function in current and former smokers: data from the Third National Health and Nutrition Examination Survey. Thorax 59:194–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Marshak DR, Gardner RL, Gottlieb D (2001) Stem cell biology. Cold Spring Harbor Laboratory Press

  45. Menai M, Heude B, Slama R, Forhan A, Sahuquillo J, Charles-Davies MA, Yazbeck C (2012) Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: the EDEN mother-child cohort study. Reprod Toxicol 34:622–627

    Article  CAS  PubMed  Google Scholar 

  46. Messerle K, Webster WS (1982) The classification and dedevelopment of cadmium-induced limb defects in mice. Teratology 25:61–70

    Article  CAS  PubMed  Google Scholar 

  47. Nasreddine L, Parent-Massin D (2002) Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol Lett 127:29–41

    Article  CAS  PubMed  Google Scholar 

  48. Niewenhuis RJ, Dimitriu C, Prozialeck WC (1997) Ultrastructural characterization of the early changes in intercellular junctions in response to cadmium (Cd2+) exposure in LLC-PK1 cells. Toxicol Appl Pharmacol 142:1–12

    Article  CAS  PubMed  Google Scholar 

  49. Nilsen NO (1984) Vascular abnormalities due to hyperthermia in chick embryos. Teratology 30:237–251

    Article  CAS  PubMed  Google Scholar 

  50. Parsons-Wingerter P, Lwai B, Yang MC, Elliot KE, Milaninia A, Redlitz A, Clark JI, Sage EH (1998) A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation of bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc Res 55:201–214

    Article  CAS  PubMed  Google Scholar 

  51. Partanen J, Armstrong E, Makela TP, Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K, Alitalo K (1992) A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol 12:1698–1707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pearson CA, Lamar PC, Prozialeck WC (2003) Effects of cadmium on E-cadherin and VE-cadherin in mouse lung. Life Sci 72:1303–1320

    Article  CAS  PubMed  Google Scholar 

  53. Peault B (2010) Haemangioblasts: back to the future? Blood 116:2864–2966

    Article  CAS  PubMed  Google Scholar 

  54. Peifer C, Dannhardt G (2004) A novel quantitative chick embryo assay as an angiogenesis model using digital image analysis. Anticancer Res 24:1545–1552

    CAS  PubMed  Google Scholar 

  55. Prozialeck WC (2000) Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol 164:231–249

    Article  CAS  PubMed  Google Scholar 

  56. Prozialeck WC, Edwards JR, Nebert DW, Woods JM, Barchowsky A, Atchison WD (2008) The vascular systems as a target of metal toxicity. Toxicol Sci 102:207–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Prozialeck WC, Edwards JR, Woods JM (2006) The vascular endothelium as a target of cadmium toxicity. Life Sci 79:1493–1506

    Article  CAS  PubMed  Google Scholar 

  58. Prozialeck WC, Niewenhuis RJ (1991) Cadmium (Cd2+) disrupts Ca(2+)-dependent cell-cell junctions and alters the pattern of E-cadherin immunofluorescence in LLC-PK1 cells. Biochem Biophys Res Commun 181:1118–1124

    Article  CAS  PubMed  Google Scholar 

  59. Ramezani M, Bahadoran H, Abasi S (2011) Effect of L-carnitin on cadmium induced toxicity in rat embryo hippocampus. Int Proc Chem Biol Environ Eng 19:147–150

    Google Scholar 

  60. Ribatti D, Vacca A, Roncali L, Dammacco F (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Biol 40:1189–1197

    CAS  Google Scholar 

  61. Rieder MJ, O’drobinak DM, Greene AS (1995) A computerized method for determination of microvascular density. Microvasc Res 49:180–189

    Article  CAS  PubMed  Google Scholar 

  62. Risau W (1991) Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development. Issues Biomed 14:58–68

    Google Scholar 

  63. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  64. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  PubMed  Google Scholar 

  65. Samarawickrama GP, Webb M (1981) The acute toxicity and teratogenicity of cadmium in the pregnant rat. J Appl Toxicol 1:264–269

    Article  CAS  PubMed  Google Scholar 

  66. Sato TN, Tozawa Y, Deutsh U, Wolburg-Buchholz K, Fujiwara M, Gendron-Maguire T, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    Article  CAS  PubMed  Google Scholar 

  67. Schmidt A, Brixius K, Bloch W (2007) Endothelial precursor cell migration during vasculogenesis. Circ Res 101:125–136

    Article  CAS  PubMed  Google Scholar 

  68. Sorokin VA, Valeev VA, Gladchenko GO, Sysa IV (1997) Interaction of divalent cadmium ions with nucleotides and native DNA. Biofizika 42:105–116

    CAS  PubMed  Google Scholar 

  69. Thompson JM, Bannigan JG (2001) The effects of cadmium on formation of the ventral body wall in chick embryos and their prevention by zinc pre-treatment. Teratology 64:87–97

    Article  CAS  PubMed  Google Scholar 

  70. Thompson JM, Bannigan JG (2007) Omphalocele induction in the chick embryo by administration of cadmium. J Pediatr Surg 42:1703–1709

    Article  PubMed  Google Scholar 

  71. Thompson JM, Doi T, Power E, Balasubramanian I, Puri P, Bannigan J (2010) Evidence against a direct role for oxidative stress in cadmium-induced axial malformation in the chick embryo. Toxicol Appl Pharmacol 243:390–398

    Article  CAS  PubMed  Google Scholar 

  72. Valois AA, Webster WS (1987) Retention and distribution of cadmium in the mouse brain: an autoradiographic and gamma counting study. Neurotoxicology 8:463–470

    CAS  PubMed  Google Scholar 

  73. Valois AA, Webster WS (1989) The choroid plexus as a target site for cadmium toxicity following chronic exposure in the adult mice: an ultrastructural study. Toxicology 55:193–205

    Article  CAS  PubMed  Google Scholar 

  74. Vaois AA, Webster WS (1987) The choroid plexus and cerebral vasculature as target sites for cadmium following acute exposure in neonatal and adult mice: an autoradiographic and gamma counting study. Toxicology 46:43–55

    Article  Google Scholar 

  75. Velde EA, Exalto N, Hesseling P, Linden HC (1997) First trimester development of human chorionic villous vascularization studied with CD34 immunohistochemistry. Hum Reprod 12:1577–1581

    Article  Google Scholar 

  76. Vico PG, Kyriacos SOH, Louryan S, Cartilier LH (1998) Dynamic study of the extra-embryonic vascular network of the chick embryo by fractal analysis. J Theor Biol 95:525–532

    Article  Google Scholar 

  77. Webster WAS, Messerle K (1980) Changes in the mouse neuroepithelium associated with cadmium-induced neural tube defects. Teratology 21:79–88

    Article  CAS  PubMed  Google Scholar 

  78. Webster WS (1988) Chronic cadmium exposure during pregnancy in the mouse: influence of exposure levels on fetal and maternal uptake. J Toxicol Environ Health 24:183–192

    Article  CAS  PubMed  Google Scholar 

  79. Werler MM, Mitchell AA, Moore CA, Honein MA (2009) It there epidemiologic evidence to support vascular disruption as a pathogenesis of gastroschisis? Am J Med Genet 149A:1399–1406

    Article  PubMed Central  PubMed  Google Scholar 

  80. WHO (1993) Evaluation of certain food additives and contaminants (Fourty-first Report of the Joint FAO/WHO Expert Committee on Food Additives). WHO Technical Report Series No. 837

  81. Woods JM, Leone M, Klosowska K, Lamar PC, Shaknovsky TJ, Prozialeck WC (2008) Direct antiangiogenic actions of cadmium on human vascular endothelial cells. Toxicol Vitro 22:643–651

    Article  CAS  Google Scholar 

  82. Yamamoto FY, Neto FF, Freitas PF, Ribeiro CAO (2012) Cadmium effects on early development of chick embryos. Environ Toxicol Pharmacol 34:548–555

    Article  CAS  PubMed  Google Scholar 

  83. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM (2009) Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29:2011–2022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gheorghescu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gheorghescu, A., Thompson, J. Delayed vasculogenesis and impaired angiogenesis due to altered Ang-2 and VE-cadherin levels in the chick embryo model following exposure to cadmium. Pediatr Surg Int 32, 175–186 (2016). https://doi.org/10.1007/s00383-015-3830-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-015-3830-9

Keywords

Navigation