Skip to main content

Advertisement

Log in

Interdecadal change in the influence of El Niño in the developing stage on the central China summer precipitation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The central China summer precipitation (CCSP) is of great importance to the people’s livelihood of this densely populated region, including the agriculture, ecosystems, water resources, economies, and health. Based on the observed precipitation, sea surface temperature (SST), and atmospheric reanalysis datasets, the present study investigates the effects of El Niño in the developing stage on the CCSP during 1960–2014. The results show that the CCSP anomalies exhibit significant negative correlations with the El Niño-related SST anomalies in both the simultaneous summer and the following winter, implying that the developing El Niño is important for modulating the CCSP. However, this climatic teleconnection of El Niño is unstable, with an obvious interdecadal change around the late 1980s. Specifically, the negative correlation is not statistically significant in the previous epoch before the late 1980s (1960–1988), but dramatically strengthens since the late 1980s (the post epoch for 1989–2014). Such an interdecadal change is closely associated with the change of the El Niño-related SST anomaly pattern. Compared to the previous epoch, the central Pacific El Niño occurs more frequently in the post epoch, leading to an interdecadal shift of the maximum warm SST anomalies from the eastern Pacific to the central Pacific. The resultant westward extension of the atmospheric circulation responses induces an anomalous low-level cyclone covering South China in the post epoch. It would prevent the southwest monsoon from delivering the moisture to the north and hence reduce the CCSP. While, in the previous epoch, the anomalous cyclone locates east of South China, exerting insignificant influence on the CCSP. This work highlights a strengthening effect of El Niño on the CCSP since the late 1980s, with great implications for the regional seasonal climate prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • An SI, Wang B (2001) Mechanisms of locking of the El Niño and La Niña nature phases to boreal winter. J Clim 14:2164–2176

    Article  Google Scholar 

  • Ashok K, Behera KS, Rao SA et al (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML et al (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93:631–651

    Article  Google Scholar 

  • Cai W, Wu L, Lengaigne M et al (2019) Pantropical climate interactions. Science 363:1–11

    Article  Google Scholar 

  • Cao Q, Hao ZC, Zhou JW et al (2019) Impacts of various types of El Niño–Southern Oscillation (ENSO) and ENSO Modoki on the rainy season over the Huaihe river basin. Int J Climatol 39:2811–2824

    Article  Google Scholar 

  • Chang CP, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part Ι: role of the subtropical ridge. J Clim 13:4310–4325

    Article  Google Scholar 

  • Chang CP, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: meridional structure of the monsoon. J Clim 13:4326–4340

    Article  Google Scholar 

  • Chen W (2002) Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon (in Chinese). Chin J Atmos Sci 26:595–610

    Google Scholar 

  • Chen TC, Wang SY, Huang WR, Yen MC (2004) Variation of the East Asian summer monsoon rainfall. J Clim 17:744–762

    Article  Google Scholar 

  • Chen ZS, Wen ZP, Wu RG et al (2014) Influence of two types of El Niño on the East Asian climate during boreal summer: a numerical study. Clim Dyn 43:469–481

    Article  Google Scholar 

  • Chen Z, Wen Z, Wu R et al (2016) Relative importance of tropical SST anomalies in maintaining the western North Pacific anomalous anticyclone during El Niño to La Niña transition years. Clim Dyn 46:1027–1041

    Article  Google Scholar 

  • Chen Z, Du Y, Wen Z et al (2018) Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming. Clim Dyn 50:4707–4719

    Article  Google Scholar 

  • Chen W, Wang L, Feng J et al (2019) Recent progress in studies of the variability and mechanisms of the East Asian monsoon in a changing climate. Adv Atmos Sci 36:887–901

    Article  Google Scholar 

  • Chen MY, Chang TH, Lee CT et al (2021) A study of climate model responses of the western Pacific subtropical high to El Niño diversity. Clim Dyn 56:581–595

    Article  Google Scholar 

  • Chiang JCH, Kong W, Wu CH, Battisti DS (2020) Origins of East Asian summer monsoon seasonality. J Clim 33:7945–7965

    Article  Google Scholar 

  • Chowdary JS, Gnanaseelan C (2007) Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int J Climatol 27:1421–1438

    Article  Google Scholar 

  • Deser C, Alexander MA, Xie SP, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Ann Rev Mar Sci 2:115–143

    Article  Google Scholar 

  • Ding Y (2007) The variability of the Asian summer monsoon. J Meteorol Soc Japan 85B:21–54

    Article  Google Scholar 

  • Ding Y, Chan JCL (2005) The East Asian summer monsoon: an overview. Meteorol Atmos Phys 89:117–142

    Article  Google Scholar 

  • Ding Y, Liu Y, Hu ZZ (2021) The record-breaking Meiyu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv Atmos Sci 6:1–14

    Google Scholar 

  • Du Y, Xie SP, Huang G, Hu KM (2009) Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038

    Article  Google Scholar 

  • Feng J, Chen W, Tam CY, Zhou W (2010) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phase. Int J Climatol 31:2091–2101

    Article  Google Scholar 

  • Feng J, Chen W, Gong HN et al (2019) An investigation of CMIP5 model biases in simulating the impacts of central Pacific El Niño on the East Asian summer monsoon. Clim Dyn 52:2631–2646

    Article  Google Scholar 

  • Feng Y, Chen XY, Tung KK (2020) ENSO diversity and the recent appearance of central Pacific ENSO. Clim Dyn 54:413–433

    Article  Google Scholar 

  • Gao CJ, Li G, Xu B, Li XY (2020a) Effect of spring soil moisture over the Indo-China Peninsula on the following summer extreme precipitation events over the Yangtze River basin. Clim Dyn 54:3845–3861

    Article  Google Scholar 

  • Gao CJ, Li G, Chen HS, Yan H (2020b) Interdecadal change in the effect of spring soil moisture over the Indo-China Peninsula on the following summer precipitation over the Yangtze river basin. J Clim 33:7063–7082

    Article  Google Scholar 

  • Gao CJ, Li G, Xu B (2020c) Weakening influence of spring soil moisture over the Indo-China Peninsula on the following summer Mei-yu front and precipitation extremes over the Yangtze river basin. J Clim 33:10055–10072

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • He C, Zhou T, Li T (2019) Weakened anomalous western North Pacific anticyclone during an El Niño-decaying summer under a warmer climate: dominant role of the weakened impact of the tropical Indian Ocean on the atmosphere. J Clim 32:213–230

    Article  Google Scholar 

  • He LQ, Hao X, Han TT (2021) The asymmetric impacts of ENSO Modoki on boreal winter climate over the Pacific and its rim. Clim Dyn 56:29–44

    Article  Google Scholar 

  • Hu K, Xie SP, Huang G (2017) Orographically anchored El Niño effect on summer rainfall in central China. J Clim 30:10037–10045

    Article  Google Scholar 

  • Hu K, Huang G, Xie SP, Long SM (2019) Effect of the mean flow on the anomalous anticyclone over the Indo-Northwest Pacific in post-El Niño summers. Clim Dyn 53:5725–5741

    Article  Google Scholar 

  • Hu K, Liu Y, Huang G et al (2020) Contributions to the interannual summer rainfall variability in the mountainous area of central China and their decadal changes. Adv Atmos Sci 37:259–268

    Article  Google Scholar 

  • Huang R, Wu Y (1989) The influence of ENSO on the summer climate change in China and its mechanisms. Adv Atmos Sci 6:21–32

    Article  Google Scholar 

  • Huang R, Xu Y, Wang P, Zhou L (1998) The features of the catastrophic flood over the Changjiang river basin during the summer of 1998 and cause exploration (in Chinese). Climatic Environ Res 3:300–313

    Google Scholar 

  • Huang YY, Wang B, Li XF, Wang HJ (2018) Changes in the influence of the western Pacific subtropical high on Asian summer monsoon rainfall in the late 1990s. Clim Dyn 51:443–455

    Article  Google Scholar 

  • Jeong HI, Lee DY, Ashok K et al (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim Dyn 39:475–493

    Article  Google Scholar 

  • Jiang T, Kundzewicz ZW, Su B (2010) Changes in monthly precipitation and flood hazard in the Yangtze river basin, China. Int J Climatol 28:1471–1481

    Article  Google Scholar 

  • Jiang WP, Li G, Wang GJ (2021) Effect of the El Niño decaying pace on the East Asian summer monsoon circulation pattern during post-El Niño summers. Atmosphere 12:1–13

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karori MA, Li JP, Jin FF (2013) The asymmetric influence of the two types of El Niño and La Niña on summer rainfall over Southeast China. J Clim 26:4567–4582

    Article  Google Scholar 

  • Ke D, Guan ZY (2014) Regional mean daily precipitation extremes over central China during boreal summer and its relation with the anomalous circulation patterns (in Chinese). Acta Meteorol Sin 72(3):478–493

    Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Lau NC, Leetmaa A, Nath MJ, Wang HL (2005) Influences of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J Clim 18:2922–2942

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. https://doi.org/10.1029/2010GL044007

    Article  Google Scholar 

  • Li XY, Lu RY (2020) Breakdown of the summertime meridional teleconnection pattern over the western North Pacific and East Asia since the early 2000s. J Clim 33:8487–8505

    Article  Google Scholar 

  • Li G, Xie SP (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1980

    Article  Google Scholar 

  • Li XZ, Zhou W, Chen DL et al (2014) Water vapor transport and moisture budget over Eastern China: remote forcing from the two types of El Niño. J Clim 27:8778–8792

    Article  Google Scholar 

  • Li G, Xie SP, Du Y (2016a) Effects of excessive equatorial cold tongue bias on the projections of tropical Pacific climate change. Part I: the mean warming pattern in CMIP5 multi-model ensemble. Clim Dyn 47:3817–3831

    Article  Google Scholar 

  • Li XC, Xie SP, Gille ST, Yoo C (2016b) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Chang 6:275–279

    Article  Google Scholar 

  • Li G, Xie SP, He C, Chen Z (2017a) Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat Clim Change 7:708–712

    Article  Google Scholar 

  • Li T, Wang B, Wu B et al (2017b) Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: a review. J Meteorol Res 31:987–1006

    Article  Google Scholar 

  • Li G, Jian YT, Yang S et al (2019) Effect of excessive equatorial Pacific cold tongue bias on the El Niño-Northwest Pacific summer monsoon relationship in CMIP5 multi-model ensemble. Clim Dyn 52:6195–6212

    Article  Google Scholar 

  • Li G, Gao CJ, Lu B, Chen HS (2021a) Inter-annual variability of spring precipitation over the Indo-China Peninsula and its asymmetric relationship with El Niño-South Oscillation. Clim Dyn 56:2651–2665

    Article  Google Scholar 

  • Li G, Gao CJ, Xu B et al (2021b) Strengthening influence of El Niño on the following spring precipitation over the Indochina Peninsula. J Clim 34:5971–5984

    Google Scholar 

  • Li RKK, Tam CY, Lau NC (2021c) Effect of ENSO diversity and cold tongue bias on seasonal prediction of South China late spring rainfall. Clim Dyn 57:577–591

    Article  Google Scholar 

  • Liu BQ, Yan YH, Zhu CW et al (2020) Record-breaking Meiyu rainfall around the Yangtze river in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys Res Lett 47:e2020GL090342. https://doi.org/10.1029/2020GL090342

    Article  Google Scholar 

  • Liu BQ, Zhu Cw, Jiang N, Guo L (2021) Seasonal evolution of anomalous rainband over East China regulated by sea surface temperature anomalies in the northern Hemisphere. J Clim 34:3087–3102

    Google Scholar 

  • McGregor S, Timmermann A, Stuecker MF et al (2014) Recent walker circulation strengthening and pacific cooling amplified by Atlantic warming. Nat Clim Chang 4:888–892

    Article  Google Scholar 

  • Newman M, Sardeshmukh PD (2017) Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys Res Lett 44:8520–8529

    Article  Google Scholar 

  • Pascolini-Campbell M, Zanchettin D, Bothe O et al (2015) Toward a record of central Pacific El Niño events since 1880. Theor Appl Climatol 119:379–389

    Article  Google Scholar 

  • Petrova D, Koopman SJ, Ballester J, Rodó X (2017) Improving the long-lead predictability of El Niño using a novel forecasting scheme based on a dynamic components model. Clim Dyn 48:1249–1276

    Article  Google Scholar 

  • Qiao S, Chen D, Wang B et al (2021) The longest 2020 Meiyu season over the past 60 years: subseasonal perspective and its predictions. Geophys Res Lett 48:e2021GL093596. https://doi.org/10.1029/2021GL093596

    Article  Google Scholar 

  • Rayner NA, Brohan P, Parker DE et al (2006) Improved analysis of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469

    Article  Google Scholar 

  • Ren GY, Wu H, Chen ZH (2013) Spatial patterns of change trend in rainfall of China (in Chinese). Q J Appl Meteorol 11:322–330

    Google Scholar 

  • Sampe T, Xie SP (2010) Large-scale dynamics of the Meiyu-Baiu rainband: environmental forcing by the westerly jet. J Clim 23:113–134

    Article  Google Scholar 

  • Stuecker MF, Timmermann A, Jin FF et al (2013) A combination mode dynamics of the annual cycle and the El Niño/Southern Oscillation. Nat Geosci 6:540–544

    Article  Google Scholar 

  • Stuecker MF, Jin FF, Timmermann A, McGregor S (2015) Combination mode dynamics of the anomalous Northwest Pacific anticyclone. J Clim 28:1093–1111

    Article  Google Scholar 

  • Su T, Xue F (2010) The intraseasonal variation of summer monsoon circulation and rainfall in East Asia (in Chinese). Chin J Atmos Sci 34:611–628

    Google Scholar 

  • Sun J, Xu Y, Chen ZH, Wang K (2010) Characteristics of precipitation in central region of China over 45 years (in Chinese). Resour Environ Yangtze Basin 19:45–51

    Google Scholar 

  • Tozuka T, Yamagata T (2003) Annual ENSO. J Phys Oceanogr 33:1564–1578

    Article  Google Scholar 

  • Wang CZ (2002a) Atmospheric circulation cells associated with the El Niño-Southern Oscillation. J Clim 15:399–419

    Article  Google Scholar 

  • Wang CZ (2002b) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536

    Article  Google Scholar 

  • Wang CZ (2019) Three-ocean interactions and climate variability: a review and perspective. Clim Dyn 53:5119–5136

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian. climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Wu R, Li T (2003) Atmosphere-warm Ocean interaction and its impacts on the Asian-Australian monsoon variation. J Clim 16:1195–1211

    Article  Google Scholar 

  • Wang B, Xiang BQ, Lee JY (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci 110:2718–2722

    Article  Google Scholar 

  • Wang B, Li J, He Q (2017) Variable and robust East Asian Monsoon rainfall response to El Niño over the past 60 years (1957-2016). Adv Atmos Sci 34:1235–1248

    Article  Google Scholar 

  • Wang JX, Zhu XF, Liu XF, Pan YZ (2018) Research on agriculture drought monitoring method of Henan Province with multi-sources data (in Chinese). Remote Sensing for Land and Resources 30:180–186

    Google Scholar 

  • Wang P, Tam CY, Xu K (2019) El Niño-East Asian monsoon teleconnection and its diversity in CMIP5 models. Clim Dyn 53:6417–6435

    Article  Google Scholar 

  • Wang P, Tam CY, Lau NC, Xu K (2021) Future impacts of two types of El Niño on East Asian rainfall based on CMIP5 model projections. Clim Dyn 56:899–916

    Article  Google Scholar 

  • Wen N, Liu ZY, Li T (2019) Direct ENSO impact on East Asian summer precipitation in the developing summer. Clim Dyn 52:6799–6815

    Article  Google Scholar 

  • Wen N, Li L, Luo JJ (2020) Direct impacts of different types of El Niño in developing summer on East Asian precipitation. Clim Dyn 55:1087–1104

    Article  Google Scholar 

  • Weng HY, Ashok K, Behera SK et al (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  • Weng HY, Wu GX, Liu YM et al (2011) Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Clim Dyn 36:769–782

    Article  Google Scholar 

  • Wu R, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758

    Article  Google Scholar 

  • Wu B, Zhou TJ, Li T (2009) Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 22:2992–3005

    Article  Google Scholar 

  • Wu R, Yang S, Liu S et al (2010) Changes in the relationship between Northeast China summer temperature and ENSO. J Geophys Res 115:D21107. https://doi.org/10.1029/2010JD014422

    Article  Google Scholar 

  • Wu MN, Zhou TJ, Chen XL, Wu B (2020) Intermodel uncertainty in the projection of the anomalous western North Pacific anticyclone associated with El Niño under global warming. Geophys Res Lett 47:e2019GL086139. https://doi.org/10.1029/2019GL086139

    Article  Google Scholar 

  • Wu XB, Li G, Jiang WP et al (2021) Asymmetric relationship between ENSO and the tropical Indian Ocean summer SST anomalies. J Clim 34:5955–5969

    Google Scholar 

  • Xie SP, Zhou ZQ (2017) Seasonal modulations of El Niño-related atmospheric variability: Indo-Pacific Ocean feedback. J Clim 30:3461–3472

    Article  Google Scholar 

  • Xie SP, Annamalai H, Schott F, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:864–878

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Xie SP, Du Y, Huang G et al (2010) Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the late 1970s. J Clim 23:3352–3368

    Article  Google Scholar 

  • Xie SP, Kosaka Y, Du Y et al (2016) Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33:411–432

    Article  Google Scholar 

  • Xue F, Liu CZ (2008) The influence of moderate ENSO on summer rainfall in eastern China and its comparison with strong ENSO. Chin Sci Bull 53:602–609

    Article  Google Scholar 

  • Yang JL, Liu QY, Xie SP et al (2007) Impact of Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. https://doi.org/10.1029/2006GL028571

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B et al (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yong L, Huang RH (2019) Linkages between the South and East Asian monsoon water vapor transport during boreal summer. J Clim 32:4509–4524

    Article  Google Scholar 

  • Yu T, Feng J, Chen W (2020) Evaluation of CMIP5 models in simulating the respective impacts of East Asian winter monsoon and ENSO on the western North Pacific anomalous anticyclone. Int J Climatol 40:805–821

    Article  Google Scholar 

  • Yuan Y, Yang S (2012) Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J Clim 25:7702–7722

    Article  Google Scholar 

  • Yuan Y, Yang S, Zhang ZQ (2012) Different evolutions of the Philippine sea anticyclone between the eastern and central Pacific El Niño: possible effects of Indian Ocean SST. J Clim 25:7867–7883

    Article  Google Scholar 

  • Zhang R, Sumi A (1999) A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 16:229–241

    Article  Google Scholar 

  • Zheng J, Wang C (2021) Influences of three oceans on record-breaking rainfall over the Yangtze river valley in June 2020. Sci China Earth Sci. https://doi.org/10.1007/s11430-020-9758-9

    Article  Google Scholar 

  • Zhou Y, Deng G, Chen H, Chen Z (2005) Synoptic features of the second Meiyu period in 1998 over China. J Meteorol Res 19:31–43

    Google Scholar 

  • Zhou XY, Liu F, Wang B et al (2019) Different responses of East Asian summer rainfall to El Niño decays. Clim Dyn 53:1497–1515

    Article  Google Scholar 

  • Zhou ZQ, Xie SP, Zhang RH (2021) Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc Natl Acad Sci 118:2022255118. https://doi.org/10.1073/pnas.2022255118

    Article  Google Scholar 

  • Zou Y, Yu JY, Lee T et al (2014) CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J Geophys Res 119:3076–3092

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA070298 and 2018YFC1506002), the Natural Science Foundation of China (41831175, 41975097, 42076208, 41706026, and 41905054), the Fundamental Research Funds for the Central Universities (B210201015, B210202135, B210201029, and B200202138), the Natural Science Foundation of Jiangsu Province (BK20211209), the Open Research Fund of the State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences) (LTO2110), and the open fund of State Key Laboratory of loess and Quaternary Geology (520013212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Li, G., Long, SM. et al. Interdecadal change in the influence of El Niño in the developing stage on the central China summer precipitation. Clim Dyn 59, 1265–1282 (2022). https://doi.org/10.1007/s00382-021-06036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-06036-9

Keywords

Navigation