Skip to main content

Advertisement

Log in

Summer and winter Atlantic Niño: connections with ENSO and implications

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The teleconnection between the Atlantic Niño and the Pacific El Niño Southern Oscillation (ENSO) is revisited using observational and reanalysis data for the 1905–2014 period. Two types of Atlantic Niño are significantly negatively correlated with ENSO, with Atlantic leading ENSO by 6-month to 1-year. The first one is the already well-known connection between the boreal summer Atlantic Niño (ATL3: 3° N–3° S, 20° W–0°) and the subsequent winter ENSO (Niño3: 5° N–5° S, 150° W–90° W). This relationship is strong in the first and last decades of the study period. It is shown that a second Atlantic Niño in boreal fall/early winter (October–December, hereinafter called winter Atlantic Niño) is also significantly correlated with the following year ENSO. This winter Atlantic Niño leads to an early development of ENSO from boreal summer onwards, with a marked multidecadal modulation of the lead time. A nearly 1-year leading connection between winter Atlantic Niño and the following ENSO is generally observed in the mid-twentieth century, mostly when the summer Atlantic Niño teleconnection with the subsequent winter ENSO is weak. The same mechanism of the Atlantic–Pacific Niño connection, which involves the Walker circulation, operates for the two types of Atlantic Niño. Our analysis supports the leading influence of the summer and winter Atlantic equatorial modes on climate variability in South America. These results suggest the relevance of different types of Atlantic Niño for the 6-month to 1-year predictability of ENSO and its climatic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. All seasons indicated in this study are referred to boreal seasons.

References

  • Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231

    Google Scholar 

  • An SI, Wang B (2001) Mechanisms of locking of the El Niño and La Niña nature phases to boreal winter. J Clim 14:2164–2176

    Google Scholar 

  • Ashok K, Behera S, Rao AS, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Google Scholar 

  • Blumenthal MB (1991) Predictability of a coupled atmosphere-ocean model. J Clim 4:766–784

    Google Scholar 

  • Cai W et al (2019) Pantropical climate interactions. Science. https://doi.org/10.1126/science.aav4236

    Article  Google Scholar 

  • Cane MA (2005) The evolution of El Niño, past and future. Earth Planet Sci Lett 230:227–240

    Google Scholar 

  • Caniaux G, Giordani H, Redelsperger J-L, Guichard F, Key E, Wade M (2011) Coupling between the Atlantic cold tongue and the West African monsoon in boreal spring and summer. J Geophys Res. https://doi.org/10.1029/2010JC00657

    Article  Google Scholar 

  • Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Ninño and the Atlantic Niño. Nature 443:324–328. https://doi.org/10.1038/nature05053

    Article  Google Scholar 

  • Chiang JC, Kushnir Y, Zebiak SE (2000) Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geo Res Lett 27:3687–3690

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteor Soc 137:1–28

    Google Scholar 

  • Delécluse P, Servain J, Levy C, Arpe K, Bengtsson L (1994) On the teleconnection between the 1984 Atlantic warm event and the 1982–1983 ENSO. Tellus 46A:448–464

    Google Scholar 

  • Ding H, Keenlyside N, Latif M (2009) Seasonal cycle in the upper equatorial Atlantic Ocean. J Geophys Res 114(C9):C09016

    Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Nino southern oscillation. Clim Dyn 38:1965–1972. https://doi.org/10.1007/s00382-011-1097-y

    Article  Google Scholar 

  • Dong BW, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Nino-Southern oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett. https://doi.org/10.1029/2006GL025766

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945

    Google Scholar 

  • Foltz GR, McPhaden MJ (2010) Abrupt equatorial wave-induced cooling of the Atlantic cold tongue in 2009. Geophys Res Lett 37:L24605. https://doi.org/10.1029/2010GL045522

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. https://doi.org/10.1029/2011GL050520

    Article  Google Scholar 

  • Giannini A, Chiang JCH, Cane MA, Kushnir Y, Seager R (2001) The ENSO teleconnection to the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas. J Clim 14:4530–4544

    Google Scholar 

  • Giannini A, Saravanan R, Chang P (2004) The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim Dyn 22:839–855

    Google Scholar 

  • Giese BS, Seidel HF, Compo GP, Sardeshmukh PD (2016) An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J Geophys Res Oceans 121:6891–6910. https://doi.org/10.1002/2016JC012079

    Article  Google Scholar 

  • Grimm AM (2003) The El Niño impact on the summer monsoon in Brazil: regional processes versus remote influences. J Clim 16:263–280

    Google Scholar 

  • Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22:1589–1609

    Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate variability in southern South America associated with El Niño and La Nina events. J Clim 13:35–58

    Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern oscillation events. Nat Geosci 6:112–116

    Google Scholar 

  • Hounsou-Gbo GA, Servain J, Araujo M, Caniaux G, Bourlès B, Fontenele D, Martins ESPR (2019) SST indexes in the Tropical South Atlantic for forecasting rainy seasons in northeast Brazil. Atmosphere 10:335

    Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer MC, Behera SK, Luo J-J (2010) Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nat Publ Group 3(3):168–172

    Google Scholar 

  • Jia F, Cai WJ, Wu LX, Gan BL, Wang GJ, Kucharski F, Chang P, Keenlyside N (2019) Weakening Atlantic Niño-Pacific connection under greenhouse warming. Sci Adv 5(8):4111. https://doi.org/10.1126/sciadv.aax4111

    Article  Google Scholar 

  • Jin EK et al (2008) Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim Dyn 31:647–664. https://doi.org/10.1007/s00382-008-0397-3

    Article  Google Scholar 

  • Jouanno J, Hernandez O, Sanchez-Gomez E (2017) Equatorial Atlantic interannual variability and its relation to dynamic and thermodynamic processes. Earth Syst Dyn 8:1061–1069

    Google Scholar 

  • Kayano MT, Andreoli RV (2006) Relationship between rainfall anomalies over northeastern Brazil and the El Niño-Southern Oscillation. J Geophys Res 111(D13):101

    Google Scholar 

  • Kayano MT, Valéria Andreoli R, Ferreira de Souza RA (2011) Evolving anomalous SST patterns leading to ENSO extremes: relations between the tropical Pacific and Atlantic Oceans and the influence on the South American rainfall. Int J Climatol 31:1119–1134. https://doi.org/10.1002/joc.2135

    Article  Google Scholar 

  • Kayano MT, Andreoli RV, Ferreira de Souza RA (2012) Relations between ENSO and the South Atlantic SST modes and their effects on the South American rainfall. Int J Climatol 33(8):2008–2023. https://doi.org/10.1002/joc.3569

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142

    Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Nino prediction. Geophys Res Lett 40:2278–2283. https://doi.org/10.1002/grl.50362

    Article  Google Scholar 

  • L’Heureux ML, Takahashi K, Watkins AB, Barnston AG, Becker EJ, Di Liberto TE, Gamble F, Gottschalck J, Halpert MS, Huang B, Mosquera-Vásquez K, Wittenberg AT (2017) Observing and predicting the 2015–2016 El Niño. Bull Am Meteorol Soc. https://doi.org/10.1175/BAMS-D-16-0009.1

    Article  Google Scholar 

  • Latif M, Barnett TP (1995) Interactions of the Tropical Oceans. J Clim 8:952–964

    Google Scholar 

  • Losada T, Rodríguez-Fonseca B (2016) Tropical atmospheric response to decadal changes in the Atlantic equatorial mode. Clim Dyn 47:1211–1224. https://doi.org/10.1007/s00382-015-2897-2

    Article  Google Scholar 

  • Lübbecke JF, McPhaden MJ (2012) On the inconsistent relationship between Pacific and Atlantic Niños. J Clim 25:4294–4303. https://doi.org/10.1175/JCLI-D-11-00553.1

    Article  Google Scholar 

  • Lübbecke JF, McPhaden MJ (2017) Symmetry of the Atlantic Niño mode. Geophys Res Lett 44(2):965–973. https://doi.org/10.1002/2016GL071829

    Article  Google Scholar 

  • Lübbecke JF, Böning CW, Keenlyside NS, Xie S-P (2010) On the connection between Benguela and equatorial Nñios and the role of the South Atlantic anticyclone. J Geophys Res. https://doi.org/10.1029/2009JC005964

    Article  Google Scholar 

  • Lübbecke JF, Rodríguez-Fonseca B, Richter I, Martín-Rey M, Losada T, Polo I, Keenlyside NS (2018) Equatorial Atlantic variability—modes, mechanisms, and global teleconnections. Wiley Interdiscip Rev Climate Change 9(4):1–18. https://doi.org/10.1002/wcc.527

    Article  Google Scholar 

  • Lutz K, Rathmann J, Jacobeit J (2013) Classification of warm and cold water events in the eastern tropical Atlantic Ocean. Atmos Sci Lett 14:102–106

    Google Scholar 

  • Marengo JA, Liebmann B, Grimm AM et al (2012) Recent developments on the South American monsoon system. Int J Climatol. https://doi.org/10.1002/joc.2254

    Article  Google Scholar 

  • Marin F, Caniaux G, Bourles B, Giordani H, Gouriou Y, Key E (2009) Why were sea surface temperatures so different in the eastern equatorial Atlantic in June 2005 and 2006? J Phys Oceanogr 39:1416–1431. https://doi.org/10.1175/2008jpo4030.1

    Article  Google Scholar 

  • Martín-Rey M, Rodríguez-Fonseca B, Polo I, Kucharski F (2014) On the Atlantic–Pacific Niños connection: a multidecadal modulated mode. Clim Dyn 43:3163–3178

    Google Scholar 

  • Martín-Rey M, Rodríguez-Fonseca B, Polo I (2015) Atlantic opportunities for ENSO prediction. Geophys Res Lett 42:6802–6810

    Google Scholar 

  • Martín-Rey M, Polo I, Rodriguez-Fonseca B, Losada T, Lazar A (2018) Is there evidence of changes in Tropical Atlantic variability modes under AMO phases in the observational record? J Clim 31:515–536. https://doi.org/10.1175/JCLI-D-16-0459.1

    Article  Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480. https://doi.org/10.1029/2003GL016872

    Article  Google Scholar 

  • McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett 36:L13703

    Google Scholar 

  • Merle J (1983) Seasonal variability of subsurface thermal structure in the Tropical Atlantic Ocean. Elsevier Oceanogr Ser 36:31–49. https://doi.org/10.1016/s0422-9894(08)70626-3

    Article  Google Scholar 

  • Merle J, Fieux M, Hisard P (1980) Annual signal and interannual anomalies of sea surface temperature in the eastern equatorial Atlantic Ocean. Deep-Sea Res 26:77–101

    Google Scholar 

  • Nnamchi HC, Li J, Kucharski F, Kang IS, Keenlyside NS, Chang P, Farneti R (2015) Thermodynamic controls of the Atlantic Niño. Nat Commun 6:8895. https://doi.org/10.1038/ncomms9895

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Nino and La Nina. J Clim 23:5826–5843

    Google Scholar 

  • Okumura Y, Xie S-P (2006) Some overlooked features of tropical Atlantic climate leading to a new Nino-like phenomenon. J Clim 19:5859–5874

    Google Scholar 

  • Park JH, Li T (2019) Interdecadal modulation of El Niño–tropical North Atlantic teleconnection by the Atlantic multi-decadal oscillation. Clim Dyn 52:5345–5360. https://doi.org/10.1007/s00382-018-4452-4

    Article  Google Scholar 

  • Picaut J (1983) Propagation of seasonal coastal upwelling in the eastern equatorial Atlantic. J Phys Oceanogr 13:18–37

    Google Scholar 

  • Polo I, Lazar A, Rodriguez-Fonseca B, Mignot J (2015b) Growth and decay of the equatorial Atlantic SST mode by means of closed heat budget in a coupled general circulation model. Front Earth Sci 3:37. https://doi.org/10.3389/feart.2015.00037

    Article  Google Scholar 

  • Polo I, Martin-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso CR (2015a) Processes in the Pacific La Nina onset triggered by the Atlantic Nino. Clim Dyn 44:115–131. https://doi.org/10.1007/s00382-014-2354-7

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atm 108(D14):4407. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Ren H-L, Jin F-F, Tian B et al (2016) Distinct persistence barriers in two types of ENSO. Geophys Res Lett 43:10973–10979

    Google Scholar 

  • Richter I (2015) Climate model biases in the eastern tropical oceans: causes, impacts and ways forward. WIRE Clim Change 6:345–358. https://doi.org/10.1002/wcc.338

    Article  Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2013) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6(1):43–47. https://doi.org/10.1038/Ngeo1660

    Article  Google Scholar 

  • Rodrigues RR, McPhaden MJ (2014) Why did the 2011–2012 La Niña cause a severe drought in the Brazilian Northeast? Geophys Res Lett 41:1012–1018. https://doi.org/10.1002/2013GL058703

    Article  Google Scholar 

  • Rodrigues RR, Campos EJD, Haarsma R (2015) The impact of ENSO on the South Atlantic subtropical dipole mode. J Clim 28(7):2691–2705. https://doi.org/10.1175/JCLI-D-14-00483.1

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Ninos enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. https://doi.org/10.1029/2009GL040048

    Article  Google Scholar 

  • Santoso A, Mcphaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño: ENSO extremes. Rev Geophys 55(4):1079–1129. https://doi.org/10.1002/2017RG000560

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40

    Google Scholar 

  • Servain J, Picaut J, Merle J (1982) Evidence of remote forcing in the equatorial Atlantic Ocean. J Phys Oceanogr 12:457–463

    Google Scholar 

  • Servain J, Busalacchi A, McPhaden M, Moura A-D, Reverdin G, Vianna M, Zebiak S (1998) A pilot research moored array in the tropical Atlantic (PIRATA). Bull Am Meteor Soc 79:2019–2031

    Google Scholar 

  • Servain J, Wainer I, McCreary JP, Dessier A (1999) Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. Geophys Res Lett 26:485–488

    Google Scholar 

  • Tedeschi RG, Cavalcanti IFA, Grimm AM (2012) Influences of two types of ENSO on South American precipitation. Int J Climatol 33:1382–1400

    Google Scholar 

  • Tokinaga H, Richter I, Kosaka Y (2019) ENSO influence on the Atlantic Niño, revisited: Multi-year versus single-year ENSO events. J Clim 32:4585–4600

    Google Scholar 

  • Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niño/Southern Oscillation. Q J R Meteor Soc 124:1985–2004

    Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteor Soc 78:2771–2777

    Google Scholar 

  • Uvo CB, Repelli CA, Zebiak SE, Kushnir Y (1998) The relationship between tropical Pacific and Atlantic SST and northeast Brazil monthly precipitation. J Clim 11:551–562

    Google Scholar 

  • Wang C (2019) Three-ocean interactions and climate variability: a review and perspective. Clim Dyn 53:5119–5136. https://doi.org/10.1007/s00382-019-04930-x

    Article  Google Scholar 

  • Wauthy B (1983) Introduction à la climatologie du Golfe de Guinée. Océanogr Trop 18(2):103–138

    Google Scholar 

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO events—how does 1997/98 rank? Weather 53:315–324. https://doi.org/10.1002/j.1477-8696.1998.tb06408.x

    Article  Google Scholar 

  • Wu X, Okumura YM, DiNezio PN (2019) What controls the duration of El Niño and La Niña events? J Climate 32:5941–5965. https://doi.org/10.1175/JCLID-18-0681.1

    Article  Google Scholar 

  • Yu J-Y, Lau KM (2005) Contrasting Indian Ocean SST variability with and without ENSO influence: a coupled atmosphere-ocean GCM study. Meteorol Atmos Phys 90:179–191. https://doi.org/10.1007/s00703-004-0094-7

    Article  Google Scholar 

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño Southern Oscillation. Mon Wea Rev 115:2262–2278

    Google Scholar 

Download references

Acknowledgements

This study is a component of the project “Elaboração de Estudos de Suporte ao Planejamento e à Gestão de Sistemas Hídricos no Nordeste, com foco no Abastecimento Urbano e na Operação de Infraestruturas Hídricas de Uso Múltiplo” (Grant 001/2016 ANA/FUNCEME SICONV 863.189/2016). J. S. thanks FUNCEME (Edital 01/2016) for its support at Fortaleza, CE, Brazil. This work also represents collaboration by the INCT AmbTropic, the Brazilian National Institute of Science and Technology for Tropical Marine Environments, CNPq/FAPESB (grants 565054/2010-4 and 8936/2011 and 465634/2014-1) and the Brazilian Research Network on Global Climate Change FINEP/Rede CLIMA (grants 01.13.0353-00). This is a contribution to the LMI-TAPIOCA and to the TRIATLAS project, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 817578. We acknowledge Met Office Hadley Centre observations datasets (https://www.metoffice.gov.uk/hadobs/) for HadISST and EN.4.2.1 dataset. The 20th Century Reanalysis V3 data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/. GPCC Precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aubains Hounsou-Gbo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hounsou-Gbo, A., Servain, J., Vasconcelos Junior, F.C. et al. Summer and winter Atlantic Niño: connections with ENSO and implications. Clim Dyn 55, 2939–2956 (2020). https://doi.org/10.1007/s00382-020-05424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-020-05424-x

Keywords

Navigation