Skip to main content

Advertisement

Log in

The influence of South American regional climate on the simulation of the Southern Hemisphere extratropical circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper presents new modeling evidence showing the added value of high-resolution information from South America (SA) in the simulation of the Southern Hemisphere (SH) extratropical circulation. LMDZ, a coarse-resolution atmospheric global general circulation model constitutes the main tool for this investigation. Parallel to the control simulation, a two-way nesting (TWN) simulation of LMDZ is performed with an interactive coupling to the same model, but with a higher-resolution zoom over SA. The third simulation is a perfect boundary simulation for which re-analysis information from ERA-Interim is used to nudge LMDZ, but only over SA. Results indicate that enhanced resolution over SA improves the representation of the most important processes that influence extratropical eddy activity. The local improvement is followed by a better representation of the global extratropical circulation, especially in austral summer. The regional climate enhancement over SA has positive effects on simulation of the midlatitude jet position during the austral summer by significantly reducing the bias of the mean zonal kinetic energy outside the nudged zone. On the other hand, the wintertime general circulation outside the nudged-zone shows a limited bias-reduction for the regional-driven simulations, especially in the case of the TWN system. However, improvements of the TWN system compared to the control experiment are noticed in early stages of cyclone lifecycle, as it is identified in a better simulation of transient meridional heat transport and transient kinetic energy intensity. The findings of the present study suggest, thus, that improvements in resolution over SA effectively excite the simulation of the mean atmospheric circulation in the SH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berbery EH, Barros VR (2002) The hydrologic cycle of the La Plata Basin in South America. J Hydrometeorol 3(6):630–645

    Google Scholar 

  • Berckmans J, Woollings T, Demory M-E, Vidale P-L, Roberts M (2013) Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmos Sci Lett 14(1):34–40

    Google Scholar 

  • Boville BA (1991) Sensitivity of simulated climate to model resolution. J Clim 4(5):469–485

    Google Scholar 

  • Bracegirdle TJ, Shuckburgh E, Sallee J-B, Wang Z, Meijers AJS, Bruneau N, Phillips T, Wilcox LJ (2013) Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J Geophys Res 118(2):547–562

    Google Scholar 

  • Butterworth S (1930) On the theory of filter amplifiers. Wirel Eng 7(6):536–541

    Google Scholar 

  • Carril AF, Menendez C, Nunez M, Treut HL (2002) Mean flow-transient perturbation interaction in the Southern Hemisphere: a simulation using a variable-resolution GCM. Clim Dyn 18(8):661–673

    Google Scholar 

  • Carril AF, Nuñez MN (2000) La respuesta de la circulación atmosférica en el Hemisferio Sur ante cambios prescritos en la temperatura de la superficie del mar extratropical. Atmósfera 13(1):39–51

    Google Scholar 

  • Ceppi P, Hwang Y-T, Frierson DMW, Hartmann DL (2012) Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys Res Lett, 39(19):n/a–n/a

    Google Scholar 

  • Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res, 117(D23):n/a–n/a

    Google Scholar 

  • Cunningham CA, Cavalcanti IF (2006) Intraseasonal modes of variability affecting the south atlantic convergence zone. Int J Climatol 26(9):1165–1180

    Google Scholar 

  • Custodio MDS, da Rocha RP, Ambrizzi T, Vidale PL, Demory M-E (2017) Impact of increased horizontal resolution in coupled and atmosphere-only models of the HadGEM1 family upon the climate patterns of South America. Clim Dyn 48(9—-10):3341–3364

    Google Scholar 

  • Custodio MDS, da Rocha RP, Vidale PL (2012) Analysis of precipitation climatology simulated by high resolution coupled global models over the South America. Hydrol Res Lett 6(0):92–97

    Google Scholar 

  • De Sales F, Xue Y (2011) Assessing the dynamic-downscaling ability over South America using the intensity-scale verification technique. Int J Climatol 31(8):1205–1221

    Google Scholar 

  • DeBlander E, Shaman J (2017) Teleconnection between the south atlantic convergence zone and the southern indian ocean: implications for tropical cyclone activity. J Geophys Res 122(2):728–740

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Google Scholar 

  • Edmon H Jr, Hoskins B, McIntyre M (1980) Eliassen-palm cross sections for the troposphere. J Atmos Sci 37(12):2600–2616

    Google Scholar 

  • Figueroa SN, Satyamurty P, Da Silva Dias PL (1995) Simulations of the summer circulation over the South American region with an eta coordinate model. J Atmos Sci 52(10):1573–1584

    Google Scholar 

  • Gozzo LF, da Rocha RP, Reboita MS, Sugahara S, Gozzo LF, Rocha RPD, Reboita MS, Sugahara S (2014) Subtropical cyclones over the Southwestern South Atlantic: climatological aspects and case study. J Clim 27(22):8543–8562

    Google Scholar 

  • Grise KM, Polvani LM, Grise KM, Polvani LM (2014) Southern Hemisphere cloud-dynamics biases in CMIP5 models and their implications for climate projections. J Clim 27(15):6074–6092

    Google Scholar 

  • Hoskins BJ, Hodges KI (2005) A new perspective on Southern Hemisphere storm tracks. J Clim 18(20):4108–4129

    Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813

    Google Scholar 

  • Inatsu M, Hoskins BJ (2004) The zonal asymmetry of the Southern Hemisphere winter storm track. J Clim 17(24):4882–4892

    Google Scholar 

  • Inatsu M, Kimoto M (2009) A scale interaction study on East Asian cyclogenesis using a general circulation model coupled with an interactively nested regional model. Mon Weather Rev 137(9):2851–2868

    Google Scholar 

  • Insel N, Poulsen CJ, Ehlers TA (2010) Influence of the Andes Mountains on South American moisture transport, convection, and precipitation. Clim Dyn 35(7):1477A–1492A

    Google Scholar 

  • IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia. Cambridge University Press, pp 1535

  • Iqbal W, Leung W, Hannachi A (2018) Analysis of the variability of the North Atlantic eddy-driven jet stream in CMIP5. Clim Dyn 51:235–247

    Google Scholar 

  • James I, Anderson D (1984) The seasonal mean flow and distribution of large-scale weather systems in the southern hemisphere: the effects of moisture transports. Q J R Meteorol Soc 110(466):943–966

    Google Scholar 

  • Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2016) Influence of South America orography on summertime precipitation in Southeastern South America. Clim Dyn 46:3941–3963

    Google Scholar 

  • Knippertz P, Wernly H, Glaser G (2013) A global climatology of tropical moisture exports. J Clim 26(10):3031–3045

    Google Scholar 

  • Krinner G, Beaumet J, Favier V, Déqué M, Brutel-Vuilmet C (2018) Empirical run-time bias correction for antarctic regional climate projections with a stretched-grid agcm. J Adv Modeling Earth Syst 11(1):64–82

    Google Scholar 

  • Laprise R (2008) Regional climate modelling. J Comput Phys 227(7):3641–3666

    Google Scholar 

  • Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54(5):656–678

    Google Scholar 

  • Li Z-X (1999) Ensemble atmospheric gcm simulation of climate interannual variability from 1979 to 1994. J Clim 12(4):986–1001

    Google Scholar 

  • Lorenz EN (1955) Available potential energy and the maintenance of the general circulation. Tellus 7(2):157–167

    Google Scholar 

  • Madonna E, Wernli H, Joos H, Martius O (2014) Warm conveyor belts in the ERA-interim dataset (1979–2010). Part I: climatology and potential vorticity evolution. J Clim 27(1):3–26

    Google Scholar 

  • Mendes D, Souza EP, Trigo IF, Miranda PMA (2007) On precursors of South American cyclogenesis. Tellus A 59(1):114–121

    Google Scholar 

  • Menendez C, Serafini V, Le Treut H (1999) The effect of sea-ice on the transient atmospheric eddies of the southern hemisphere. Clim Dyn 15(9):659–671

    Google Scholar 

  • Menéndez CG, Saulo AC, Li Z-X (2001) Simulation of South American wintertime climate with a nesting system. Clim Dyn 17(2–3):219–231

    Google Scholar 

  • Müller WA, Jungclaus JH, Mauritsen T, Baehr J, Bittner M, Budich R, Bunzel F, Esch M, Ghosh R, Haak H, Ilyina T, Kleine T, Kornblueh L, Li H, Modali K, Notz D, Pohlmann H, Roeckner E, Stemmler I, Tian F, Marotzke J (2018) A higher-resolution version of the max planck institute earth system model (MPI-ESM 1.2-HR). J Adv Modeling Earth Syst 10:1383–413

    Google Scholar 

  • Nakamura H, Shimpo A (2004) Seasonal variations in the southern hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J Clim 17(9):1828–1844

    Google Scholar 

  • Nielsen DM, Belém AL, Marton E, Cataldi M (2018) Dynamics-based regression models for the south atlantic convergence zone. Clim Dyn 1–27

  • Pithan F, Shepherd TG, Zappa G, Sandu I (2016) Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys Res Lett 43(13):7231–7240

    Google Scholar 

  • Rickenbach TM, Ferreira RN, Halverson JB, Herdies DL, Dias MAS (2002) Modulation of convection in the southwestern amazon basin by extratropical stationary fronts. J Geophys Res 107(D20):LBA-7

    Google Scholar 

  • Sakaguchi K, Leung LR, Zhao C, Yang Q, Lu J, Hagos S, Rauscher SA, Dong L, Ringler TD, Lauritzen PH (2015) Exploring a multiresolution approach Using AMIP simulations. J Clim 28(14):5549–5574

    Google Scholar 

  • Sakaguchi K, Lu J, Leung LR, Zhao C, Li Y, Hagos S (2016) Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAAM4 variable-resolution simulations. J Adv Modeling Earth Syst 8(4):1786–1805

    Google Scholar 

  • Salio P, Nicolini M, Saulo AC (2002) Chaco low-level jet events characterization during the austral summer season. J Geophys Res 107(D24):4816

    Google Scholar 

  • Sandu I, van Niekerk A, Shepherd TG, Vosper SB, Zadra A, Bacmeister J, Brown AR, Dörnbrack A, McFarlane N et al (2019) Impacts of orography on large-scale atmospheric circulation. npj Clim Atmos Sci 2(1):10

    Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45(7):1228–1251

    Google Scholar 

  • Seluchi ME, Marengo JA (2000) Tropical—midlatitude exchange of air masses during summer and winter in South America: climatic aspects and examples of intense events. Int J Climatol 20:1167–1190

    Google Scholar 

  • Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI, Hwang Y-T, Li C, O’Gorman PA, Rivière G, Simpson IR, Voigt A (2016) Storm track processes and the opposing influences of climate change. Nat Geosci 9(9):656–664

    Google Scholar 

  • Shimizu MH, Cavalcanti IF (2011) Variability patterns of rossby wave source. Clim Dyn 37(3–4):441–454

    Google Scholar 

  • Sinclair MR (1995) A climatology of cyclogenesis for the Southern Hemisphere. Mon Weather Rev 123(6):1601–1619

    Google Scholar 

  • Trenberth KE (1991) Storm tracks in the Southern Hemisphere. J Atmos Sci 48(19):2159–2178

    Google Scholar 

  • Wilcox LJ, Charlton-Perez AJ, Gray LJ (2012) Trends in Austral jet position in ensembles of high- and low-top CMIP5 models. J Geophys Res, 117(D13):n/a–n/a

    Google Scholar 

  • Zappa G, Shaffrey LC, Hodges KI, Sansom PG, Stephenson DB (2013) A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. J Clim 26(16):5846–5862

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Argentinean agencies CONICET (PIP 11220150100402CO) and ANPCyT (PICT 2014-0887, PICT-2015-3097), and by the French National Program LEFE/INSU (AO2015-876370). Computing resources were allocated by GENCI/IDRIS, the computer center of CNRS. The first author was supported by CONICET and by the Saint Exupéry Program (MED-MAEDI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Falco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falco, M., Li, L.Z.X., Menéndez, C.G. et al. The influence of South American regional climate on the simulation of the Southern Hemisphere extratropical circulation. Clim Dyn 53, 6469–6488 (2019). https://doi.org/10.1007/s00382-019-04940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-019-04940-9

Keywords

Navigation