Skip to main content
Log in

Understanding the Central Equatorial African long-term drought using AMIP-type simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Previous studies show that Indo-Pacific sea surface temperature (SST) variations may help to explain the observed long-term drought during April–May–June (AMJ) since the 1990s over Central equatorial Africa (CEA). However, the underlying physical mechanisms for this drought are still not clear due to observation limitations. Here we use the AMIP-type simulations with 24 ensemble members forced by observed SSTs from the ECHAM4.5 model to explore the likely physical processes that determine the rainfall variations over CEA. We not only examine the ensemble mean (EM), but also compare the “good” and “poor” ensemble members to understand the intra-ensemble variability. In general, EM and the “good” ensemble member can simulate the drought and associated reduced vertical velocity and anomalous anti-cyclonic circulation in the lower troposphere. However, the “poor” ensemble members cannot simulate the drought and associated circulation patterns. These contrasts indicate that the drought is tightly associated with the tropical Walker circulation and atmospheric teleconnection patterns. If the observational circulation patterns cannot be reproduced, the CEA drought will not be captured. Despite the large intra-ensemble spread, the model simulations indicate an essential role of SST forcing in causing the drought. These results suggest that the long-term drought may result from tropical Indo-Pacific SST variations associated with the enhanced and westward extended tropical Walker circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Aloysius NR, Sheffield J, Saiers JE, Li H, Wood EF (2016) Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J Geophys Res 121:130–152

    Google Scholar 

  • Asefi-Najafabady S, Saatchi S (2013) Response of African humid tropical forests to recent rainfall anomalies. Phil Trans R Soc B 368:20120306

  • Balas N, Nicholson SE, Klotter D (2007) The relationship of rainfall variability in West Central Africa to sea-surface temperature fluctuations. Int J Climatol 27:1335–1349

    Article  Google Scholar 

  • Boone AA, Xue Y, De Sales F, Comer RE, Hagos S, Mahanama S, Schiro K, Song G, Wang G, Li S, Mechoso CR (2016) The regional impact of land-use land-cover change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Clim Dyn 47:3547–3573

  • Branstator G, Selten F (2009) Modes of variability and climate change. J Clim 22:2639–2658

    Article  Google Scholar 

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int J Climatol 21:973–1005

    Article  Google Scholar 

  • Chen J, Carlson BE, Del Genio AD (2002a) Evidence for strengthening of the tropical general circulation in the 1990s. Science 295:838–841

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002b) Global land precipitation: a 50-year monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Cook KH, Vizy EK (2016) The Congo Basin Walker circulation: dynamics and connections to precipitation. Clim Dyn 47:697–717

  • Dai A, Lamb PJ, Trenberth KE, Hulme M, Jones PD, Xie P (2004) The recent Sahel drought is real. Int J Climatol 24:1323–1331

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteor Soc 137:553–597

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V et al (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546

    Article  Google Scholar 

  • Dezfuli AK, Zaitchik BF, Gnanadesikan A (2015) Regional atmospheric circulation and rainfall variability in south equatorial Africa. J Clim 28:809–818

    Article  Google Scholar 

  • Diem JE, Ryan SJ, Hartter J, Palace MW (2014) Satellite-based rainfall data reveal a recent drying trend in central equatorial Africa. Clim Change 126:263–272

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958

  • Farnsworth A, White E, Williams C, Black E, Kniveton DR (2011) Understanding the large scale driving mechanisms of rainfall variability over Central Africa. In: Williams C, Kniveton D (eds) African climate and climate change. Springer, New York, pp 101–122

  • Funk C (2012) Exceptional warming in the Western Pacific-Indian Ocean Warm Pool has contributed to more frequent droughts in Eastern Africa. Bull Am Meteor Soc 7:1049–1051

    Google Scholar 

  • Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Gleckler PJ, Hnilo JJ, Marlais SM, Phillips TJ, Potter GL, Santer BD, Sperber KR, Taylor KE, Williams DN (1999) An overview of the results of the atmospheric model intercomparison project (AMIP I). Bull Amer Meteor Soc 80:29–55

    Article  Google Scholar 

  • Giannini A, Biasutti M, HeldI M, Sobel AH (2008) A global perspective on African climate. Clim Change 90:359–383

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker, TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 159–254

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteor Soc 90:1095–1107

    Article  Google Scholar 

  • Hoerling M, Hurrell J, Eischeid J, Phillips A (2006) Detection and attribution of twentieth-century Northern and Southern African rainfall change. J Clim 19:3989–4008

    Article  Google Scholar 

  • Hoerling M, Eischeid J, Perlwitz J (2010) Regional precipitation trends: distinguishing natural variability from anthropogenic forcing. J Clim 23:2131–2145

    Article  Google Scholar 

  • Hua W, Chen H, Sun S, Zhou L (2015) Assessing climatic impacts of future land use and land cover change projected with the CanESM2 model. Int J Climatol 35:3661–3675

    Article  Google Scholar 

  • Hua W, Zhou L, Chen H, Nicholson SE, Jiang Y, Raghavendra A (2016) Possible causes of the Central Equatorial African long-term drought. Environ Res Lett 11:124002

  • IPCC (2013) Climate change 2013: the physical science basis, the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. ISBN:978-1-107-05799-1

  • Jackson B, Nicholson SE, Klotter D (2009) Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon Wea Rev 137:1272–1294

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758

    Article  Google Scholar 

  • Laing A, Fritsch JM (1993) Mesoscale convective complexes in Africa. Mon Wea Rev 121:2254–2263

  • Liebmann B, Camargo SJ, Seth A, Marengo JA, Carvalho LMV, Allured D, Fu R, Vera CS (2007) Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J Clim 20:2037–2050

    Article  Google Scholar 

  • Ludwig F, Franssen W, Jans W, Beyenne T, Kruijt B, Supit I (2013) Climate change impacts on the Congo Basin region. In: Haensler A, Jacob D, Kabat P, Ludwig F (eds) Climate change scenarios for the Congo basin. Climate Service Centre Report No. 11, Hamburg, Germany, ISSN:2192–4058

  • Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39:L02702. doi:10.1029/2011GL050337

    Article  Google Scholar 

  • Ma S, Zhou T (2016) Robust strengthening and westward shift of the tropical Pacific Walker circulation during 1979–2012: a comparison of 7 sets of reanalysis data and 26 CMIP5 models. J Clim 29:3097–3118

    Article  Google Scholar 

  • Maidment RI, Allan RP, Black E (2015) Recent observed and simulated changes in precipitation over Africa. Geophys Res Lett 42:8155–8164

    Article  Google Scholar 

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Phil Trans R Soc B 359:311–329

  • Nicholson SE (2016) An analysis of recent rainfall conditions in eastern Africa. Int J Climatol 36:526–532

    Article  Google Scholar 

  • Nicholson SE, Dezfuli AK (2013) The relationship of rainfall variability in western equatorial Africa to the tropical Oceans and atmospheric circulation. Part I: The boreal spring. J Clim 26:45–65

    Article  Google Scholar 

  • Nicholson SE, Grist JP (2003) The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. J Clim 16:1013–1030

    Article  Google Scholar 

  • Pegion PJ, Kumar A (2010) Multimodel estimates of atmospheric response to modes of SST variability and implications for droughts. J Clim 23:4327–4341

    Article  Google Scholar 

  • Pokam MW, Djiotang LAT, Mkankam FK (2012) Atmospheric water vapor transport and recycling in equatorial Central Africa through NCEP/NCAR reanalysis data. Clim Dyn 38:1715–1729

  • Pokam MW, Bain CL, Chadwick RS, Graham R, Sonwa DJ, Kamga FM (2014) Identification of processes driving low-level westerlies in West Equatorial Africa. J Clim 27:4245–4262

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck Institute for Meteorology Tech Rep 218, Hamburg

    Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40

  • Selten FM, Branstator GW, Dijkstra HA, Kliphuis M (2004) Tropical originals for recent and future northern hemisphere climate change. Geophys Res Lett 31:L21205. doi:10.1019/2004GL020739

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multimodel ensemble in probabilistic climate projections. Phil Trans R Soc A 365:2053–2075

  • Tian Y, Dickinson RE, Zhou L, Shaikh M (2004) Impact of new land boundary conditions from Moderate resolution imaging spectroradiometer (MODIS) data on the climatology of land surface variables. J Geophys Res 109:D20115. doi:10.1029/2003JD004499

    Article  Google Scholar 

  • Todd MC, Washington R (2004) Climate variability in central equatorial Africa: influence from the Atlantic sector. Geophys Res Lett 31:L23202. doi:10.1029/2004GL020975

    Article  Google Scholar 

  • Trenberth KE (1999) Atmospheric moisture recycling: role of advection and local evaporation. J Clim 12:1368–1381

    Article  Google Scholar 

  • Wang G, Yu M, Xue Y (2016) Modeling the potential contribution of land cover changes to the late twentieth century Sahel drought using a regional climate model: impact of lateral boundary conditions. Clim Dyn 47:3457–3477

  • Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo Basin rainfall climatology: can we believe the climate models? Phil Trans R Soc B 368:20120296

  • Williams AP, Funk C (2011) A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim Dyn 37:2417–2435

  • Xue Y, De Sales F, Lau WKM, Boone A, Kim KM, Mechoso CR, Wang G, Kucharski F, Schiro K, Hosaka M, Li S, Druyan LM, Sanda IS, Thiaw W, Zeng N, Comer RE, Lim YK, Mahanama S, Song G, Gu Y, Hagos SM, Chin M, Schubert S, Dirmeyer P, Leung LR, Kalnay E, Kitoh A, Lu CH, Mahowald NM, Zhang Z (2016) West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II). Clim Dyn 47:3517–3545

  • Yang W, Seager R, Cane MA, Lyon B (2014) The East African long rains in observations and models. J Clim 27:7185–7202

    Article  Google Scholar 

  • Zeng N (2003) Drought in the Sahel. Science 302:999–1000

    Article  Google Scholar 

  • Zhou L, Dickinson RE, Tian Y, Zeng X, Dai Y, Yang Z-Y, Schaaf CB, Gao F, Jin Y, Strahler A, Myneni RB, Yu H, Wu W, Shaikh M (2003) Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Mode. J Geophys Res 108:4488. doi:10.1029/2002JD003326

    Article  Google Scholar 

  • Zhou L, Dickinson RE, Dirmeyer P, Dai A, Min S-K (2009) Spatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations. Geophy Res Lett 36:L02702. doi:10.1029/2008GL036141

  • Zhou L, Dickinson RE, Dai A, Dirmeyer P (2010) Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: Comparing multi-model simulations with observations. Clim Dyn 35:1289–1307

  • Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao S, Chen H, Vermote EF, Song C, Hwang T (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature 509:86–90

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the International Research Institute for Climate and Society (IRI) working group on modeling, and we thank the modeling groups for producing and making their model output available. This study was supported by National Science Foundation (NSF AGS-1535426 and AGS-1535439). W.H. was jointly funded by the National Natural Science Foundation of China (41605034), the National Natural Science Foundation of Jiangsu Province (BK20160948) and the Natural Science Foundation for Higher Education Institutions in Jiangsu Province (16KJB170007) as well as project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We also thank Prof. Aiguo Dai (SUNY at Albany, USA) for insightful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjian Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, W., Zhou, L., Chen, H. et al. Understanding the Central Equatorial African long-term drought using AMIP-type simulations. Clim Dyn 50, 1115–1128 (2018). https://doi.org/10.1007/s00382-017-3665-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3665-2

Keywords

Navigation