Skip to main content
Log in

Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): atmosphere–land–ocean–sea ice coupled prediction system for operational seasonal forecasting

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper describes the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2), which was put into operation in June 2015 for the purpose of performing seasonal predictions. JMA/MRI-CPS2 has various upgrades from its predecessor, JMA/MRI-CPS1, including improved resolution and physics in its atmospheric and oceanic components, introduction of an interactive sea-ice model and realistic initialization of its land component. Verification of extensive re-forecasts covering a 30-year period (1981–2010) demonstrates that JMA/MRI-CPS2 possesses improved seasonal predictive skills for both atmospheric and oceanic interannual variability as well as key coupled variability such as the El Niño–Southern Oscillation (ENSO). For ENSO prediction, the new system better represents the forecast uncertainty and transition/duration of ENSO phases. Our analysis suggests that the enhanced predictive skills are attributable to incremental improvements resulting from all of the changes, as is apparent in the beneficial effects of sea-ice coupling and land initialization on 2-m temperature predictions. JMA/MRI-CPS2 is capable of reasonably representing the seasonal cycle and secular trends of sea ice. The sea-ice coupling remarkably enhances the predictive capability for the Arctic 2-m temperature, indicating the importance of this factor, particularly for seasonal predictions in the Arctic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://chfps.cima.fcen.uba.ar/ Accessed 12 September 2016.

  2. http://ds.data.jma.go.jp/tcc/tcc/products/model/ Accessed 12 September.

References

  • Alexander MA, Bhatt UM, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905

    Article  Google Scholar 

  • Balmaseda MA, Ferranti L, Molteni F, Palmer TN (2010) Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: implications for long-range predictions. Q J R Meteorol Soc 136:1655–1664

    Article  Google Scholar 

  • Barnston AG, van den Dool HM (1993) A degeneracy in cross-validated skill in regression-based forecasts. J Clim 6:963–977

    Article  Google Scholar 

  • Barnston AG, Tippett MK, LHeureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93:631–651

  • Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim 24(1):231–250

    Article  Google Scholar 

  • Bloom SC, Takas LL, Da Silva AM, Ledvina D (1996) Data assimilation using incremental analysis updates. Mon Weather Rev 124:1256–1271

    Article  Google Scholar 

  • Buizza R, Milleer M, Palmer TN (1999) Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q J R Meteorol Soc 125:2887–2908

    Article  Google Scholar 

  • Butler AH, Arribas A, Athanassiadou M, Baehr J, Calvo N, Charlton-Perez A, Déqué M, Domeisen DIV, Fröhlich K, Hendon H, Imada Y, Ishii M, Iza M, Karpechko AY, Kumar A, MacLachlan C, Merryfield WJ, Müller WA, O’Neill A, Scaife AA, Scinocca J, Sigmond M, Stockdale TN, Yasuda T (2016) The Climate-system Historical Forecast Project: do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Q J R Meteorol Soc 142:1413–1427

    Article  Google Scholar 

  • Chevallier M, Salas-Mélia D, Voldoire A, Déqué M, Garric G (2013) Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J Clim 26(16):6092–6104

    Article  Google Scholar 

  • Chevallier M, Smith GC, Dupont F, Lemieux JF, Forget G, Fujii Y, Hernandez F, Msadek R, Peterson KA, Storto A, Toyoda T, Valdivieso M, Vernieres G, Zuo H, Balmaseda M, Chang Y-S, Ferry N, Garric G, Haines K, Keeley S, Kovach RM, Kuragano T, Masina S, Tang Y, Tsujino H, Wang X (2016) Intercomparison of the Arctic sea ice cover in global oceansea ice reanalyses from the ORA-IP project. Clim Dyn. doi:10.1007/s00382-016-2985-y

    Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35(1):L1703

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Fairall C, Bradley EF, Hare J, Grachev A, Edson J (2003) Bulk parameterization of airsea fluxes: updates and verification for the COARE algorithm. J Clim 16(4):571–591

    Article  Google Scholar 

  • Fujii Y, Kamachi M (2003) Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity EOF modes. J Geophys Res 108(C9):3297

    Article  Google Scholar 

  • Fujii Y, Kamachi M, Matsumoto S, Ishizaki S (2012) Barrier layer and relevant variability of the salinity field in the equatorial Pacific estimated in an ocean reanalysis experiment. Pure Appl Geophys 169:579–594

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Guemas V, Blanchard-Wrigglesworth E, Chevallier M, Day JJ, Déqué M, Doblas-Reyes FJ, Fuckar N, Germe A, Hawkins E, Keeley S, Koenigk T, Salas-Mélia D, Tietsche S (2014) A review on Arctic sea ice predictability and prediction on seasonal-to-decadal timescales. Q J R Meteorol Soc 142:546–561

    Article  Google Scholar 

  • Guo Z, Dirmeyer PA, DelSole T (2011) Land surface impacts on subseasonal and seasonal predictability. Geophys Res Lett 38:L24812

    Article  Google Scholar 

  • Hoffman RN, Kalnay E (1983) Lagged averaged forecasting, an alternative to Monte Carlo forecasting. Tellus 35A:100–118

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707

    Article  Google Scholar 

  • Honda M, Yamazaki K, Nakamura H, Takeuchi K (1999) Dynamic and thermodynamic characteristics of atmospheric response to anomalous sea-ice extent in the sea of Okhotsk. J Clim 12:3347–3358

    Article  Google Scholar 

  • Hopsch S, Cohen J, Dethloff K (2013) Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A 64:18624

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808

    Article  Google Scholar 

  • Hunke CE and Lipscomb WH (2006) CICE: the Los Alamos sea ice model documentation and software user’s manual. Tech Rep LA-CC-98-16, 59, T-3 Fluid Dynamics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, 59 pp

  • Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the northern hemisphere. Nat Geosci 4:753–757

    Article  Google Scholar 

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of SST and marine meteorological variables for the 20th century using COADS and the Kobe collection. Int J Climatol 25:865–879

    Article  Google Scholar 

  • Ishizaki H, Yamanaka G (2010) Impact of explicit sun altitude in solar radiation on an ocean model simulation. Ocean Model 33:52–69

    Article  Google Scholar 

  • Jakob C, Siebesma AP (2003) A new subcloud model for mass-flux convection schemes: influence on triggering, updraft properties, and model climate. Mon Weather Rev 131:2765–2778

    Article  Google Scholar 

  • Japan Meteorological Agency (2013) Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Numerical Weather Prediction Progress Report, Tokyo, Japan. http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm. Accessed 12 September

  • Jeong JH, Linderholm HW, Woo SH, Folland C, Kim BM, Kim SJ, Chen D (2013) Impacts of snow initialization on subseasonal forecasts of surface air temperature for the cold season. J Clim 26(6):1956–1972

    Article  Google Scholar 

  • Ji M, Kumar A, Leetmaa A (1994) Development of seasonal climate forecast system using coupled oceanatmosphere model at National Meteorological Center. Bull Am Meteorol Soc 75:569–577

    Article  Google Scholar 

  • Kawai H (2013) Improvement of a stratocumulus scheme for mid-latitude marine low clouds. CAS/JSC WGNE Res Activ Atmos Ocean Model 43:4.3–4. http://www.wcrp-climate.org/WGNE/BlueBook/2013/documents/author-list.html. Accessed 12 Sep 2016

  • Kay JE, Holland MM, Jahn A (2011) Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys Res Lett 38:L15708

    Article  Google Scholar 

  • Kirtman B, Pirani A, (2008) WCRP position paper on seasonal prediction. Report from the First WCRP seasonal prediction workshop, 4–7, (June 2007) Barcelona. Technical report on WCRP informal report, Spain

  • Kirtman B, Pirani A (2009) The state of the art of seasonal prediction: outcomes and recommendations from the first world climate research program workshop on seasonal prediction. Bull Am Meteorol Soc 90(4):455–458

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48

    Article  Google Scholar 

  • Koster RD, Guo Z, Dirmeyer PA, Yang R, Mitchell K, Puma MJ (2009) On the nature of soil moisture in land surface models. J Clim 22:4322–4335

    Article  Google Scholar 

  • Koster RD, Mahanama SPP, Yamada TJ, Balsamo G, Berg AA, Boisserie M, Dirmeyer PA, Doblas-Reyes FJ, Drewitt G, Gordon CT, Guo Z (2010) Contribution of land surface initialization to subseasonal forecast skill: first results from a multi-model experiment. Geophys Res Lett 37:L02402

    Article  Google Scholar 

  • Koster RD, Mahanama SPP, Yamada TJ, Balsamo G, Berg AA, Boisserie M, Dirmeyer PA, Doblas-Reyes FJ, Drewitt G, Gordon CT, Guo Z (2011) The second phase of the global landatmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J Hydrometeorol 12(5):805–822

    Article  Google Scholar 

  • Kuragano T, Fujii Y, Toyoda T, Usui N, Ogawa K, Kamachi M (2014) Seasonal barotropic sea surface height fluctuation in relation to regional ocean mass variation. J Oceanogr 70:45–62

    Article  Google Scholar 

  • Liniger MA, Mathis H, Appenzeller C, Doblas-Reyes FJ (2007) Realistic greenhouse gas forcing and seasonal forecasts. Geophys Res Lett 34:L04705

    Article  Google Scholar 

  • Lopez H, Kirtman BP (2014) WWBs, ENSO predictability, the spring barrier and extreme events. J Geophys Res 119(17):10114–10138

    Google Scholar 

  • Lorenc AC, Rawlins F (2005) Why does 4D-Var beat 3D-Var? Q J R Meteorol Soc 131(613):3247–3257

    Article  Google Scholar 

  • Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360

    Article  Google Scholar 

  • MacLachlan C, Arribas A, Peterson KA, Maidens A, Fereday D, Scaife AA, Gordon M, Vellinga M, Williams A, Comer RE, Camp J, Xavier P, Madec G (2015) Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quart J R Meteorol Soc 141(684):1072–1084

    Article  Google Scholar 

  • Marshall AG, Scaife AA, Ineson S (2009) Enhanced seasonal prediction of European winter warming following volcanic eruptions. J Clim 22:6168–6180

    Article  Google Scholar 

  • Materia S, Borrelli A, Bellucci A, Alessandri A, Di Pietro P, Athanasiadis P, Navarra A, Gualdi S (2014) Impact of atmosphere and land surface initial conditions on seasonal forecasts of global surface temperature. J Clim 27:9253–9271

    Article  Google Scholar 

  • Mellor GL, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94(C8):10937–10954

    Article  Google Scholar 

  • Merryfield WJ, Lee WS, Wang W, Chen M, Kumar A (2013) Multi-system seasonal predictions of Arctic sea ice. Geophys Res Lett 40(8):1551–1556

    Article  Google Scholar 

  • Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geosci 7:869–873

    Article  Google Scholar 

  • Msadek R, Vecchi GA, Winton M, Gudgel RG (2014) Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys Res Lett 41(14):5208–5215

    Article  Google Scholar 

  • Nagasawa R (2013) Problem of cloud overlap in radiation process in JMA global NWP model. CAS/JSC WGNE Res Act Atm Ocea Model/WMO 42 4:15–16. http://www.wcrp-climate.org/WGNE/BlueBook/2012/documents/author-list.html. Accessed 12 Sep 2013

  • Nakano H, Suginohara N (2002) Effects of bottom boundary layer parameterization on reproducing deep and bottom waters in a world ocean model. J Phys Oceanogr 32(4):1209–1227

    Article  Google Scholar 

  • (2010) Assessment of intraseasonal to interannual climate prediction and predictability. The National Academies Press, Washington, DC

  • National Academies, of Sciences, Engineering, and Medicine (2016) Next generation earth system prediction: strategies for subseasonal to seasonal forecasts. The National Academies Press, Washington, DC, p 350

  • Noh Y, Kim H-J (1999) Simulations of temperature and turbulence structure of the oceanic boundary layerwith the improved near-surface process. J Geophys Res 104:15621–15634

    Article  Google Scholar 

  • Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22:177–192

    Article  Google Scholar 

  • Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843

    Article  Google Scholar 

  • Orsolini YJ, Senan R, Balsamo G, Doblas-Reyes FJ, Vitart F, Weisheimer A, Carrasco A, Benestad RE (2013) Impact of snow initialization on sub-seasonal forecasts. Clim Dyn 41(7–8):1969–1982

    Article  Google Scholar 

  • Peterson KA, Arribas A, Hewitt HT, Keen AB, Lea DJ, McLaren AJ (2014) Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Clim Dyn 44(1–2):147–162

    Google Scholar 

  • Sigmond M, Fyfe JC, Flato GM, Kharin VV, Merryfield WJ (2013) Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys Res Lett 40:529–534

    Article  Google Scholar 

  • Stackhouse PW Jr, Gupta SK, Cox SJ, Zhang T, Mikovitz JC, Hinkelman LM (2011) 24.5-year SRB data set released. GEWEX News 21:10–12

    Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34(9):L09501

    Article  Google Scholar 

  • Stroeve JC, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier WN (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39(16):L16502

    Article  Google Scholar 

  • Takaya Y, Bidlot JR, Beljaars ACM, Janssen PAEM (2010) Refinements to a prognostic scheme of skin sea surface temperature. J Geophys Res 115:C06009

    Article  Google Scholar 

  • Takaya Y, Yasuda T, Fujii Y, Matsumoto S, Soga T, Mori H, Hirai M, Ishikawa I, Sato H, Shimpo A, Kamachi M, Ose T (2017) Japan Meteorological Agency/Meteorological Research InstituteCoupled Prediction System version 1 (JMA/MRICPS1) for operational seasonal forecasting. Clim Dyn 48:313–333

    Article  Google Scholar 

  • Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Niiio/Southern Oscillation. Quart J Meteorol Soc 124:1985–2004

    Google Scholar 

  • Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3319

    Article  Google Scholar 

  • Toyoda T, Fujii Y, Yasuda T, Usui N, Iwao T, Kuragano T, Kamachi M (2013) Improved analysis of the seasonal interannual fields by a global ocean data assimilation system. Theor Appl Mech Jpn 61:31–48

    Google Scholar 

  • Toyoda T, Fujii F, Yasuda T, Usui N, Ogawa K, Kuragano T, Tsujino H, Kamachi M (2016) Data assimilation of sea ice concentration into a global oceansea ice model with corrections for atmospheric forcing and ocean temperature fields. J Oceanogr 72:235–262

    Article  Google Scholar 

  • Toyoda T, Awaji T, Sugiura N, Masuda S, Igarashi H, Sasaki Y, Hiyoshi Y, Ishikawa Y, Mochizuki T, Sakamoto TT, Tatebe H, Komuro Y, Suzuki T, Nishimura T, Mori M, Chikamoto Y, Yasunaka S, Imada Y, Arai M, Watanabe M, Shiogama H, Nozawa T, Hasegawa A, Ishii M, Kimoto M (2011) Impact of the assimilation of sea ice concentration data on an atmospheric-ocean-sea ice coupled simulation of the Arctic Ocean climate. SOLA 7:37–40

    Article  Google Scholar 

  • Tsujino H, Motoi T, Ishikawa I, Hirabara M, Nakano H, Yamanaka G, Yasuda T, Ishizaki H (2010) Reference manual for the Meteorological Research Institute Community Ocean Model (MRI-COM) version 3. Technical Reports of the Meteorological Research Institute, No 59, Meteorol Res Inst, Tsukuba, Japan, p 241. http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_59/59_en.html. Accessed 12 Sep 2016

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • Visbeck M, Marshall J, Haine T, Spall M (1997) Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J Phys Oceanogr 27:381–402

    Article  Google Scholar 

  • Wang B, Xiang B, Lee JY (2013a) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci 110(8):2718–2722

    Article  Google Scholar 

  • Wang W, Chen M, Kumar A (2013b) Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon Weather Rev 141:1375–1394

    Article  Google Scholar 

  • Yonehara H, Ujiie M (2011) A stochastic physics scheme for model uncertainties in the JMA one-week ensemble prediction system, CAS/JSC WGNE. Res Activ Atmos Ocean Model 41:6 9–10. http://www.wcrp-climate.org/WGNE/BlueBook/2011/documents/author-list.html. Accessed 12 Sep 2016

  • Yoshimura H, Yukimoto S (2008) Development of a simple coupler (Scup) for earth system modeling. Pap Met Geophys 59:19–29

    Article  Google Scholar 

  • Zavala-Garay J, Zhang C, Moore AM, Kleeman R (2005) The linear response of ENSO to the Madden–Julian oscillation. J Clim 18:2441–2459

    Article  Google Scholar 

  • Zeng X, Beljaars A (2005) A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys Res Lett 32(14):L14605

    Article  Google Scholar 

Download references

Acknowledgements

This work was done with a collaborative effort at JMA and MRI, and we acknowledge M. Hosaka, H. Kawai, H. Tsujino, S. Yukimoto, H. Yoshimura at MRI for their support to the model development. We would thank anonymous reviewers for their thoughtful and constructive comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhei Takaya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1602 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaya, Y., Hirahara, S., Yasuda, T. et al. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): atmosphere–land–ocean–sea ice coupled prediction system for operational seasonal forecasting. Clim Dyn 50, 751–765 (2018). https://doi.org/10.1007/s00382-017-3638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3638-5

Keywords

Navigation