Skip to main content

Advertisement

Log in

Interannual and low-frequency variability of Upper Indus Basin winter/spring precipitation in observations and CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

An assessment is made of the ability of general circulation models in the CMIP5 ensemble to reproduce observed modes of low-frequency winter/spring precipitation variability in the region of the Upper Indus basin (UIB) in south-central Asia. This season accounts for about two thirds of annual precipitation totals in the UIB and is characterized by “western disturbances” propagating along the eastward extension of the Mediterranean storm track. Observational data are utilized for for spatiotemporal characterization of the precipitation seasonal cycle, to compute seasonalized spectra and finally, to examine teleconnections, in terms of large-scale patterns in sea-surface temperature (SST) and atmospheric circulation. Annual and lowpassed variations are found to be associated primarily with SST modes in the tropical and extratropical Pacific. A more obscure link to North Atlantic SST, possibly related to the North Atlantic Oscillation, is also noted. An ensemble of 31 CMIP5 models is then similarly assessed, using unforced preindustrial multi-century control runs. Of these models, eight are found to reproduce well the two leading modes of the observed seasonal cycle. This model subset is then assessed in the spectral domain and with respect to teleconnection patterns, where a range of behaviors is noted. Two model families each account for three members of this subset. The degree of within-family similarity in behavior is shown to reflect underlying model differences. The results provide estimates of unforced regional hydroclimate variability over the UIB on interannual and decadal scales and the corresponding far-field influences, and are of potential relevance for the estimation of uncertainties in future water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231. doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2

  • Allen MR, Smith LA (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. J Clim 9:3373–3404

    Article  Google Scholar 

  • Barlow M, Hoell A (2015) Drought in the Middle East and central-southwest Asia during winter 2013/2014. In: Herring SC, Hoerling MP, Kossin JP, Peterson TC, Stott PA (eds) Explaining extreme events of 2014 from a climate perspective, vol 96(12), Special Supplement to the Bulletin of the American Meteorological Society, pp s71–s82. doi:10.1175/BAMS-D-15-00127.1

  • Barlow M, Cullen H, Lyon B (2002) Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J Clim 15:697–700

    Article  Google Scholar 

  • Barlow M, Zaitchik B, Paz S, Black E, Evans J, Hoell A (2015) A review of drought in the Middle East and southwest Asia. J Clim. doi:10.1175/JCLI-D-13-00692.1

  • Barnston A, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Bretherton C, Sobel A (2003) The Gill model and the weak temperature gradient approximation. J Atmos Sci 60:451–460

    Article  Google Scholar 

  • Compo G, Whitaker J, Sardeshmukh P (2006) Feasibility of a 100 year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190. doi:10.1175/BAMS-87-2-175

    Article  Google Scholar 

  • Cook ER, Palmer JG, Ahmed M, Woodhouse CA, Fenwick P, Zafar MU, Wahab M, Khan N (2013) Five centuries of upper indus river flow from tree rings. J Hydrol 486:365–375. doi:10.1016/j.jhydrol.2013.02.004

    Article  Google Scholar 

  • Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic ocean during winter: 1900–1989. J Clim 6(9):1743–1753. doi:10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC, Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519. doi:10.1175/2011JCLI3955.1

    Article  Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665. doi:10.1175/JCLI-D-11-00560.1

    Article  Google Scholar 

  • Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Hoell A, Funk C, Barlow M (2014) La Niña diversity and northwest Indian ocean rim teleconnections. Clim Dyn 43(9):2707–2724. doi:10.1007/s00382-014-2083-y

    Article  Google Scholar 

  • Hoell A, Funk C, Barlow M (2015) The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter. J Clim 28:1511–1526. doi:10.1175/JCLI-D-14-00344.1

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

  • McCabe G, Palecki M, Betancourt J (2004) Pacific and Atlantic influences on multidecadal drought frequency in the US. Proc Natl Acad Sci 101:4136–4141. doi:10.1073/pnas.0306738101

    Article  Google Scholar 

  • Meehl GA, Hu A, Santer BD (2009) The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Clim 22(3):780–792. doi:10.1175/2008JCLI2552.1

    Article  Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857

    Article  Google Scholar 

  • Pal I, Robertson AW, Lall U, Cane MA (2014) Modeling winter rainfall in northwest India using a hidden Markov model: understanding occurrence of different states and their dynamical connections. Clim Dyn. doi:10.1007/s00382-014-2178-5

    Google Scholar 

  • Palazzi E, von Hardenberg J, Terzago S, Provenzale A (2015) Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim Dyn 45:21–45. doi:10.1007/s00382-014-2341-z

    Article  Google Scholar 

  • Peng S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 16(12):1987–2004. doi:10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2

  • Rasmussen EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384. doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC full data reanalysis version 6.0 at 0.5\(^{\circ }\): Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. Tech. rep., Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst

  • Shindell DT, Schmidt GA, Miller RL, Mann ME (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Clim 16:4094–4107. doi:10.1175/1520-0442(2003)016<4094:VASFOC>2.0.CO;2

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Solomon A, Goddard L, Kumar A, Carton J, Deser C, Fukumori I, Greene AM, Heger G, Kirtman B, Kushnir Y, Newman M, Smith D, Vimont D, Delworth T, Meehl J, Stockdale T (2011) Distinguishing the roles of natural and anthropogenically forced decadal climate variability: Implications for prediction. Bull Am Meteorol Soc 92:141–156. doi:10.1175/2010BAMS2962.1

    Article  Google Scholar 

  • Syed FS, Giorgi F, Pal JS, King MP (2005) Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor Appl Climatol 86:147–160

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00094.1

  • Terzago S, von Hardenberg J, Palazzi E, Provenzale A (2014) Snowpack changes in the Hindu Kush–Karakoram-*Himalaya from CMIP5 global climate models. J Hydrometeor 15:2293–2313. doi:10.1175/JHM-D-13-0196.1

    Article  Google Scholar 

  • Watanabe M, Suzuki T, OâĂŹishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4(4):845–872. doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Whateley S, Brown C (2016) Assessing the relative effects of emissions, climate means, and variability on large water supply systems. Geophy Res Lett 43(21):11329–11338. doi:10.1002/2016GL070241

    Article  Google Scholar 

  • Yadav R, Rupa Kumar K, Rajeevan M (2012) Characteristic features of winter precipitation and its variability over northwest India. J Earth Sys Sci 121(3):611–623

    Article  Google Scholar 

  • Yu W, Yang YC, Savitsky A, Alford D, Brown C, Wescoat J, Debowicz D, Robinson S (2013) The Indus Basin of Pakistan, The World Bank, chap 3. Directions in Development series, Hydrology and Glaciers in the Upper Indus Basin. doi:10.1596/978-0-8213-9874-6

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  • Zhang W, Jin FF (2012) Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophys Res Lett 39(23):L23704. doi:10.1029/2012GL053588

    Google Scholar 

Download references

Acknowledgements

We wish to thank two anonymous reviewers for their constructive comments, which have substantially improved the paper. We are grateful for helpful comments and suggestions offered by several IRI colleagues. This research was supported by the US Department of Energy, Office of Science, Grant DE-SC0006616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M. Greene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greene, A.M., Robertson, A.W. Interannual and low-frequency variability of Upper Indus Basin winter/spring precipitation in observations and CMIP5 models. Clim Dyn 49, 4171–4188 (2017). https://doi.org/10.1007/s00382-017-3571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3571-7

Keywords

Navigation