Skip to main content
Log in

Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1) for operational seasonal forecasting

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper describes the operational seasonal prediction system of the Japan Meteorological Agency (JMA), the Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1), which was in operation at JMA during the period between February 2010 and May 2015. The predictive skill of the system was assessed with a set of retrospective seasonal predictions (reforecasts) covering 30 years (1981–2010). JMA/MRI-CPS1 showed reasonable predictive skill for the El Niño–Southern Oscillation, comparable to the skills of other state-of-the-art systems. The one-tiered approach adopted in JMA/MRI-CPS1 improved its overall predictive skills for atmospheric predictions over those of the two-tiered approach of the previous uncoupled system. For 3-month predictions with a 1-month lead, JMA/MRI-CPS1 showed statistically significant skills in predicting 500-hPa geopotential height and 2-m temperature in East Asia in most seasons; thus, it is capable of providing skillful seasonal predictions for that region. Furthermore, JMA/MRI-CPS1 was superior overall to the previous system for atmospheric predictions with longer (4-month) lead times. In particular, JMA/MRI-CPS1 was much better able to predict the Asian Summer Monsoon than the previous two-tiered system. This enhanced performance was attributed to the system’s ability to represent atmosphere–ocean coupled variability over the Indian Ocean and the western North Pacific from boreal winter to summer following winter El Niño events, which in turn influences the East Asian summer climate through the Pacific–Japan teleconnection pattern. These substantial improvements obtained by using an atmosphere–ocean coupled general circulation model underpin its success in providing more skillful seasonal forecasts on an operational basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The weights for persisted SST anomalies were 100, 50, 33, 17, and 0 % for lead times of 1, 2, 3, 4 and 5 months, respectively.

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231

    Article  Google Scholar 

  • Arakawa O, Kitoh A (2004) Comparison of local precipitation–SST relationship between the observation and a reanalysis dataset. Geophys Res Lett 31:L12206. doi:10.1029/2004GL020283

    Article  Google Scholar 

  • Arribas A, Glover M, Maidens A, Peterson K, Gordon M, MacLachlan C, Graham R, Fereday D, Camp J, Scaife AA, Xavier P, McLean P, Colman A, Cusack S (2011) The GloSea4 ensemble prediction system for seasonal forecasting. Mon Weather Rev 139(6):1891–1910. doi:10.1175/2010MWR3615.1

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull Am Meteorol Soc 93:631–651. doi:10.1175/BAMS-D-11-00111.1

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018. doi:10.1007/s00382-013-1783-z

    Article  Google Scholar 

  • Bengtsson L, Schlese U, Roeckner U, Latif M, Barnett T, Graham N (1993) A two-tiered approach to long-range climate forecasting. Science 261(5124):1026–1029

    Article  Google Scholar 

  • Buizza R, Tribbia J, Molteni F, Palmer T (1993) Computation of optimal unstable structures for a numerical weather prediction model. Tellus 45A:388–407

    Article  Google Scholar 

  • Charney JG, Shukla J (1981) Predictability of monsoons. In: Lighthill J, Pearce RP (eds) Monsoon dynamics. Cambridge University Press, Cambridge, p 99109

    Google Scholar 

  • Chen M, Wang W, Kumar A (2013) Lagged ensembles, forecast configuration, and seasonal predictions. Mon Weather Rev 141:3477–3497

    Article  Google Scholar 

  • Chikamoto Y, Mukougawa H, Kubota T, Sato H, Ito A, Maeda S (2007) Evidence of growing bred vector associated with the tropical intraseasonal oscillation. Geophys Res Lett 34:L04806. doi:10.1029/2006GL028450

    Article  Google Scholar 

  • Chowdary JS, Xie S-P, Lee J-Y, Kosaka Y, Wang B (2010) Predictability of summer northwest Pacific climate in 11 coupled model hindcasts: local and remote forcing. J Geophys Res 115:D22121. doi:10.1029/2010JD014595

    Article  Google Scholar 

  • Compo GP, Sardeshmukh PD (2009) Oceanic influences on recent continental warming. Clim Dyn 32:333–342

    Article  Google Scholar 

  • Doblas-Reyes FJ, Hagedorn R, Palmer TN, Morcrette J-J (2006) Impact of increasing greenhouse gas concentrations in seasonal ensemble forecasts. Geophys Res Lett 33:L07708. doi:10.1029/2005GL025061

    Article  Google Scholar 

  • Doblas-Reyes FJ, García J, Lienert F, Biescas AP, Rodrigues LRL (2013) Seasonal climate predictability and forecasting: status and prospects. Wiley Interdiscip Rev Clim Change 4(4):245–268. doi:10.1002/wcc.217

    Article  Google Scholar 

  • Du Y, Yang L, Xie S-P (2010) Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. J Clim 24:315–322

    Article  Google Scholar 

  • Fujii Y, Kamachi M (2003) Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity EOF modes. J Geophys Res 108(C9):3297. doi:10.1029/2002JC001745

    Article  Google Scholar 

  • Fujii Y, Kamachi M, Nakaegawa T, Yasuda T, Yamanaka G, Toyoda T, Ando K, Matsumoto S (2012) Assimilating ocean observation data for ENSO monitoring and forecasting. Clim Var Some Asp Chall Prospects. doi:10.5772/1103

    Google Scholar 

  • Fujii Y, Nakaegawa T, Matsumoto S, Yasuda T, Yamanaka G, Kamachi M (2009) Coupled climate simulation by constraining ocean fields in a coupled model with ocean data. J Clim 22:5541–5557

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155

    Article  Google Scholar 

  • Gibson JK, Kållberg P, Uppala S, Nomura S, Hernandez A, Serrano E (1997) ERA description. In: ECMWF re-analysis project report series 1

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462. doi:10.1002/qj.49710644905

  • Glahn HR, Lowry DA (1972) The use of model output statistics (MOS) in objective weather forecasting. J Appl Meteorol 11:1203–1211

    Article  Google Scholar 

  • Graham RJ, Gordon M, McLean PJ, Ineson S, Huddleston MR, Davey MK, Brookshaw A, Barnes RTH (2005) A performance comparison of coupled and uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus 57A:320–339. doi:10.1111/j.1600-0870.2005.00116.x

    Article  Google Scholar 

  • Graham RJ, Yun W-T, Kim J, Kumar A, Jones D, Bettio L, Gagnon N, Kolli RK, Smith D (2011) Long-range forecasting and the global framework for climate services. Clim Res 47:47–55. doi:10.3354/cr00963

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang CZ, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340

    Article  Google Scholar 

  • Han W, Vialard J, McPhaden MJ, Lee T, Masumoto Y, Feng M, de Ruijter WPM (2014) Indian Ocean decadal variability: a review. Bull Am Meteorol Soc 95:1679–1703. doi:10.1175/BAMS-D-13-00028.1

    Article  Google Scholar 

  • Hansen J, Sato M (2004) Greenhouse gas growth rates. Proc Natl Acad Sci 101:16109–16114

    Article  Google Scholar 

  • Hendon HH, Wheeler MC, Zhang C (2007) Seasonal dependence of the MJO–ENSO relationship. J Clim 20:531–543

    Article  Google Scholar 

  • Hoffman RN, Kalnay E (1983) Lagged averaged forecasting, an alternative to Monte Carlo forecasting. Tellus 35A:100–118

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829

    Article  Google Scholar 

  • Hudson D, Marshall AG, Yin Y, Alves O, Hendon HH (2013) Improving intraseasonal prediction with a new ensemble generation strategy. Mon Weather Rev 141:4429–4449. doi:10.1175/MWR-D-13-00059.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi:10.1029/2009GL040000

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea–surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int J Climatol 25(7):865–879. doi:10.1002/joc.1169

    Article  Google Scholar 

  • Japan Meteorological Agency (2007) Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Numerical weather prediction progress report, Tokyo. http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm. Accessed 29 Sept 2015

  • Japan Meteorological Agency (2013) Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO numerical weather prediction progress report, Tokyo. http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm. Accessed 29 Sept 2015

  • Jhun J-G, Lee E-J (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711–726. doi:10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2

    Article  Google Scholar 

  • Jiang X, Yang S, Li Y, Kumar A, Liu X, Zuo Z, Jha B (2013) Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP climate forecast system version 2. J Clim 26:3708–3727. doi:10.1175/JCLI-D-12-00437.1

    Article  Google Scholar 

  • Jin EK, James L, Kinter III, Wang B, Park C-K, Kang I-S, Kirtman BP, Kug J-S, Kumar A, Luo J-J, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled oceanatmosphere models. Clim Dyn 31(6):647–664. doi:10.1007/s00382-008-0397-3

    Article  Google Scholar 

  • Kang I-S, Jang P-H, Almazroui M (2014) Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer. Clim Dyn 42:2627–2637. doi:10.1007/s00382-013-1819-4

    Article  Google Scholar 

  • Kawamura R, Matsumura T, Iizuka S (2001) Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño–Southern Oscillation coupling. J Geophys Res 106:4681–4693

    Article  Google Scholar 

  • Kessler W, McPhaden M, Weickmann K (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100:10613–10632

    Article  Google Scholar 

  • Kim HM, Webster PJ, Curry JA, Toma VE (2012) Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts. Clim Dyn 39:2975–2991. doi:10.1007/s00382-012-1470-5

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kobayashi C, Maeda S, Ito A, Matsushita Y, Takano K (2005) Relation between SSTs and predictability of seasonal mean precipitation over the western tropical Pacific. J Meteorol Soc Jpn 83(5):919–929

    Article  Google Scholar 

  • Kosaka Y, Nakamura H (2006) Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Q J R Meteorol Soc 132:2009–2030

    Article  Google Scholar 

  • Kosaka Y, Xie S-P, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Natl Acad Sci 110:7574–7579

    Article  Google Scholar 

  • Kucharski F, Bracco A, Yoo JH, Molteni F (2009) A Gill-Matsunotype mechanism explains the Tropical Atlantic influence on African and Indian monsoon rainfall. Q J R Meteorol Soc 135:569–579

    Article  Google Scholar 

  • Kug J-S, Kang I-S, Choi D-H (2008) Seasonal climate predictability with tier-one and tier-two prediction system. Clim Dyn 31:403–416. doi:10.1007/s00382-007-0264-7

    Article  Google Scholar 

  • Kumar A, Hoerling MP (1998) Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J Clim 11:3295–3308

    Article  Google Scholar 

  • Kumar A, Zhang L, Wang W (2013) Sea surface temperature–precipitation relationship in different reanalyses. Mon Weather Rev 141:1118–1123

    Article  Google Scholar 

  • Lau N-C, Nath M (1996) The role of the “atmospheric bridge” linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057

    Article  Google Scholar 

  • Lau N-C, Leetma A, Nath MJ, Wang HL (2005) Influences of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J Clim 18:2922–2942. doi:10.1175/JCLI3445.1

    Article  Google Scholar 

  • Li YQ, Yang S (2010) A dynamical index for the East Asian winter monsoon. J Clim 23(15):4255–4262. doi:10.1175/2010JCLI3375.1

    Article  Google Scholar 

  • Liniger MA, Mathis H, Appenzeller C, Doblas-Reyes FJ (2007) Realistic greenhouse gas forcing and seasonal forecasts. Geophys Res Lett 34:L04705. doi:10.1029/2006GL028335

    Article  Google Scholar 

  • Lopez H, Kirtman BP (2014) WWBs, ENSO predictability, the spring barrier and extreme events. J Geophys Res 119(17):10114–10138. doi:10.1002/2014JD021908

    Google Scholar 

  • Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497. doi:10.1175/JCLI3526.1

    Article  Google Scholar 

  • MacLachlan C, Arribas A, Peterson KA, Maidens A, Fereday D, Scaife AA, Gordon M, Vellinga M, Williams A, Comer RE, Camp J, Xavier P, Madec G (2014) Global seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q J R Meteorol Soc. doi:10.1002/qj.2396

    Google Scholar 

  • Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2013) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim Dyn 41(910):2393–2409. doi:10.1007/s00382-012-1599-2

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44(1):25–43

    Google Scholar 

  • McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283:950–954

    Article  Google Scholar 

  • McPhaden MJ (2008) Evolution of the 2006–2007 El Niño: the role of intraseasonal to interannual time scale dynamics. Adv Geosci 14:219–230. doi:10.5194/adgeo-14-219-2008

    Article  Google Scholar 

  • Molteni M, Ferranti L, Palmer TN, Vitterbo P (1993) A dynamical interpretation of the global response to equatorial Pacific SST anomalies. J Clim 6:777–795

    Article  Google Scholar 

  • Molteni F, Stockdale T, Balmaseda M, Balsamo G, Buizza R, Ferranti L, Magnusson L, Mogensen K, Palmer T, Vitart F (2011) The new ECMWF seasonal forecast system (System 4). ECMWF Technical Memorandum 656

  • Molteni F, Stockdale TN, Vitart F (2015) Understanding and modelling extra-tropical teleconnections with the Indo-Pacific region during the northern winter. Clim Dyn. doi:10.1007/s00382-015-2528-y

    Google Scholar 

  • National Academics (2010) Assessment of intraseasonal to interannual climate prediction and predictability. The National Academics, Washington

  • Nitta T (1987) Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J Meteorol Soc Jpn 65:373–390

    Google Scholar 

  • Noh Y, Kim H-J (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res 104:15621–15634

    Article  Google Scholar 

  • Ohba M, Ueda H (2006) A role of zonal gradient of SST between the Indian Ocean and the western Pacific in localized convection around the Philippines. Sci Online Lett Atmos 2:176–179

    Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432. doi:10.2151/jmsj.85.369

    Article  Google Scholar 

  • Ose T (2000) A biennially oscillating sea surface temperature and the western Pacific pattern. J Meteorol Soc Jpn 78:93–99

    Google Scholar 

  • Palmer TN, Anderson DLT (1994) The prospects for seasonal forecasting—a review paper. Q J R Meteorol Soc 120(518):755–793

    Google Scholar 

  • Rajendran K, Nanjundiah RS, Gadgil S, Srinivasan J (2012) How good are the simulations of tropical SST–rainfall relationship by IPCC AR4 atmospheric and coupled models? J Earth Sys Sci 121(3):595–610

    Article  Google Scholar 

  • Roxy M (2013) Sensitivity of precipitation to sea surface temperature over the tropical summer monsoon region and its quantification. Clim Dyn 43:1159–1169

    Article  Google Scholar 

  • Saha S et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208. doi:10.1175/JCLI-D-12-00823.1

    Article  Google Scholar 

  • Sakai K, Kawamura R (2009) Remote response of the East Asian winter monsoon to tropical forcing related to El Niño–Southern Oscillation. J Geophys Res 114:D06105. doi:10.1029/2008JD010824

    Article  Google Scholar 

  • Sato N, Sellers PJ, Randall DA, Schneider EK, Shukla J, Kinter JL III, Hou Y-T, Albertazzi E (1989) Effects of implementing the simple biosphere model (SiB) in a general circulation model. J Atmos Sci 46:2757–2782. doi:10.1175/1520-0469(1989)046<2757:EOITSB>2.0.CO;2

    Article  Google Scholar 

  • Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135:3325–3345

    Article  Google Scholar 

  • Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282(5389):728–731. doi:10.1126/science.282.5389.728

    Article  Google Scholar 

  • Stockdale TN, Anderson DLT, Albes JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature 392:370–373. doi:10.1038/32861

    Article  Google Scholar 

  • Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes F, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471. doi:10.1007/s00382-010-0947-3

    Article  Google Scholar 

  • Takaya Y, Yasuda T, Ose T, Nakaegawa T (2010) Predictability of the mean location of typhoon formation in a seasonal prediction experiment with a coupled general circulation model. J Meteorol Soc Jpn 88(5):799–812. doi:10.2151/jmsj.2010-502

    Article  Google Scholar 

  • Takayabu YN, Iguchi T, Kachi M, Shibata A, Kanzawa H (1999) Abrupt termination of the 1997–1998 El Niño in response to a Madden–Julian oscillation. Nature 402:279–282

    Article  Google Scholar 

  • Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3319

    Article  Google Scholar 

  • Tsujino H, Motoi T, Ishikawa I, Hirabara M, Nakano H, Yamanaka G, Yasuda T, Ishizaki H (2010) Reference manual for the Meteorological Research Institute Community Ocean Model (MRI-COM) version 3. Technical reports of the Meteorological Research Institute, No 59, Meteorol Res Inst, Tsukuba, Japan, pp 241. http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_59/59_en.html. Accessed 29 Sept 2015

  • Tsuyuki T, Kurihara K (1989) Impact of convective activity in the western tropical Pacific on the East Asian summer circulation. J Meteorol Soc Jpn 67:231-247

    Google Scholar 

  • Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Adv Space Res 37:806–822

    Article  Google Scholar 

  • van Oldenborgh GJ, Balmaseda MA, Ferranti L, Stockdale TN, Anderson DLT (2005) Evaluation of atmospheric fields from the ECMWF seasonal forecasts over a 15-year period. J Clim 18(16):3250–3269. doi:10.1175/JCLI3421.1

    Article  Google Scholar 

  • Ventrice MJ, Wheeler MC, Hendon HH, Schreck CJ, Thorncroft CD, Kiladis GN (2013) A modified multivariate Madden–Julian oscillation index using velocity potential. Mon Weather Rev 141(12):4197–4210

    Article  Google Scholar 

  • Waliser DE, Graham NE, Gautier C (1993) Comparison of the highly reflective cloud and outgoing longwave radiation datasets for use in estimating tropical deep convection. J Clim 6(2):331–353

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Google Scholar 

  • Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638. doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711

    Article  Google Scholar 

  • Wang B, Wu Z, Chang CP, Liu J, Li J, Zhou T (2010) Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: the northern and southern temperature modes. J Clim 23:1495–1512

    Article  Google Scholar 

  • Wang B, Xiang B, Lee JY (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci 110:2718–2722

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926. doi:10.1002/qj.49711850705

    Article  Google Scholar 

  • WMO (2009) WMO WDCGG data summary, GAW DATA volume IV—greenhouse gases and other atmospheric gases, Japan Meteorological Agency in co-operation with World Meteorological Organization 33. http://ds.data.jma.go.jp/gmd/wdcgg/products/publication.html. Accessed 22 Mar 2016

  • Wu R, Kirtman BP (2006) Changes in spread and predictability associated with ENSO in an ensemble coupled GCM. J Clim 19:4378–4396

    Article  Google Scholar 

  • Xie S-P, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22(3):730–74

    Article  Google Scholar 

  • Yang J, Liu Q, Xie S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi:10.1029/2006GL028571

    Google Scholar 

  • Yasuda T, Takaya Y, Kobayashi C, Kamachi M, Kamahori H, Ose T (2007) Asian monsoon predictability in JMA/MRI seasonal forecast system. CLIVAR Exch 43:18–24

    Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance—. J Meteorol Soc Jpn 90:23–64. doi:10.2151/jmsj.2012-A02

    Article  Google Scholar 

  • Zhang C (1993) Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J Clim 6:1898–1913

    Article  Google Scholar 

  • Zhu J, Shukla J (2013) The role of airsea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J Clim 26:5689–5697. doi:10.1175/JCLI-D-13-00190.1

    Article  Google Scholar 

Download references

Acknowledgments

We would thank H. Kawai, M. Hosaka and T. Nakaegawa at MRI and S. Yabu at JMA for their contributions to the development of JMA/MRI-CPS1, and S. Maeda and H. Kamahori for their support and encouragement. We would also thank two anonymous reviewers for their constructive comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhei Takaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaya, Y., Yasuda, T., Fujii, Y. et al. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 1 (JMA/MRI-CPS1) for operational seasonal forecasting. Clim Dyn 48, 313–333 (2017). https://doi.org/10.1007/s00382-016-3076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3076-9

Keywords

Navigation