Skip to main content
Log in

Posterior cranial vault distraction in children with syndromic craniosynostosis: the era of biodegradable materials—a comprehensive review of the literature and proposed novel global application

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Distraction osteogenesis is utilized to increase intracranial volume in the treatment of restrictive pathologies, most commonly syndromic synostosis. Children too young for open calvarial vault expansion or other systemic or local contraindications to a direct reconstructive approach benefit greatly from distraction osteogenesis, typically addressing posterior vault expansion. Wound infection, cerebrospinal fluid (CSF) leak, device failure, need for a second surgery for removal, and cost, are issues that can limit the use of this approach. These challenges are more pronounced in low- and middle-income countries (LMICs) due to lack of access to the device, the financial burden of the need for a second surgery, and the severity of the implications of infection and CSF leak. Over the last five decades, there has been an increased acceptance of bioresorbable instrumentation in craniofacial surgery. Poly L-lactic acid, polyglycolic acid, and polydioxanone are the most commonly used polymers. New resorbable fixation tools such as ultrasound-activated pins and heat-activated pins are superior to conventional bioresorbable screws in allowing attachment to thinner bone plates. In this paper, we present a review of the literature on cranial vault distraction and the use of bioresorbable materials and propose a novel design of a fully absorbable cranial distractor system using external magnetic distraction control, eliminating the need for external activation ports and a second surgery to remove the hardware. The application of this technology in LMIC settings could advance access to care and treatment options for patients with syndromic synostosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zollino M, Lattante S, Orteschi D, Frangella S, Doronzio PN, Contaldo I, Mercuri E, Marangi G (2017) Syndromic craniosynostosis can define new candidate genes for suture development or result from the non-specifc effects of pleiotropic genes: rasopathies and chromatinopathies as examples. Front Neurosci 11:587

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blount JP, Louis RG, Tubbs RS, Grant JH (2007) Pansynostosis: a review. Child’s Nervous System 23:1103–1109

    Article  PubMed  Google Scholar 

  3. Pandey S, Reddy GS, Chug A, Dixit A (2022) Posterior cranial vault distraction osteogenesis: A systematic review. J Oral Biol Craniofac Res

  4. Komuro Y, Shimizu A, Shimoji K, Miyajima M, Arai H (2015) Posterior cranial vault distraction osteogenesis with barrel stave osteotomy in thetreatment of craniosynostosis. Neurol Med Chir 55:617–623

    Article  Google Scholar 

  5. Codivilla A (1905) On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. JBJS 2:353–369

    Google Scholar 

  6. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 263–285

  7. Ilizarov GA (1990) Clinical application of the tension-stress effect for limb lengthening. Clin Orthop Relat Res 1976–2007(250):8–26

    Google Scholar 

  8. Ilizarov GA (1997) The principles of the Ilizarov method. 1988. Bulletin (Hospital for Joint Diseases (New York, NY)) 56:49–53

  9. McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH (1992) Lengthening the human mandible by gradual distraction. Plast Reconstr Surg 89:1–8

    Article  CAS  PubMed  Google Scholar 

  10. Serlo WS, Ylikontiola LP, Lähdesluoma N, Lappalainen O-P, Korpi J, Verkasalo J, Sàndor GK (2011) Posterior cranial vault distraction osteogenesis in craniosynostosis: estimated increases in intracranial volume. Childs Nerv Syst 27:627–633

    Article  PubMed  Google Scholar 

  11. White N, Evans M, Dover MS, Noons P, Solanki G, Nishikawa H (2009) Posterior calvarial vault expansion using distraction osteogenesis. Child’s Nervous System 25:231–236

    Article  PubMed  Google Scholar 

  12. Akizuki T, Komuro Y, Ohmori K (2000) Distraction osteogenesis for craniosynostosis. Neurosurg Focus 9:1–7

    Article  Google Scholar 

  13. Choi M, Flores RL, Havlik RJ (2012) Volumetric analysis of anterior versus posterior cranial vault expansion in patients with syndromic craniosynostosis. J Craniofac Surg 23:455–458

    Article  PubMed  Google Scholar 

  14. Dewan MC, Rattani A, Fieggen G, Arraez MA, Servadei F, Boop FA, Johnson WD, Warf BC, Park KB (2018) Global neurosurgery: the current capacity and deficit in the provision of essential neurosurgical care. Executive Summary of the Global Neurosurgery Initiative at the Program in Global Surgery and Social Change. J Neurosurg 130:1055–1064

    Article  PubMed  Google Scholar 

  15. Du RY, Thiong’o GM, LoPresti MA, Mohan NK, Dewan MC, Lepard J, Lam S (2020) Pediatric neurosurgery in East Africa: an education and needs-based survey. World Neurosurg 141:e374–e382

    Article  PubMed  Google Scholar 

  16. Dewan MC, Baticulon RE, Rattani A, Johnston JM, Warf BC, Harkness W (2018) Pediatric neurosurgical workforce, access to care, equipment and training needs worldwide. Neurosurg Focus 45:E13

    Article  PubMed  Google Scholar 

  17. Shlobin NA, Baticulon RE, Ortega CA, Du L, Bonfield CM, Wray A, Forrest CR, Dewan MC (2022) Global epidemiology of craniosynostosis: a systematic review and meta-analysis. World Neurosurg 164:413-423.e413

    Article  PubMed  Google Scholar 

  18. Zhang RS, Lin LO, Hoppe IC, Wes AM, Swanson JW, Bartlett SP, Taylor JA (2018) Evaluation of parental and surgeon stressors and perceptions of distraction osteogenesis in pediatric craniofacial patients: a cross-sectional survey study. Childs Nerv Syst 34:1735–1743

    Article  PubMed  Google Scholar 

  19. Can DDT, Lepard JR, Anh NM, Tuan PA, Tuan TD, Son VT, Grant JH, Johnston JM (2021) Nonsyndromic craniosynostosis in Vietnam: initial surgical outcomes of subspecialty mentorship. J Neurosurg Pediatr 28:508–515

    PubMed  Google Scholar 

  20. Greives MR, Ware BW, Tian AG, Taylor JA, Pollack IF, Losee JE (2016) Complications in posterior cranial vault distraction. Ann Plast Surg 76:211–215

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein JA, Paliga JT, Wink JD, Low DW, Bartlett SP, Taylor JA (2013) A craniometric analysis of posterior cranial vault distraction osteogenesis. Plast Reconstr Surg 131:1367–1375

    Article  CAS  PubMed  Google Scholar 

  22. Wiberg A, Magdum S, Richards PG, Jayamohan J, Wall SA, Johnson D (2012) Posterior calvarial distraction in craniosynostosis - an evolving technique. J Craniomaxillofac Surg 40:799–806

    Article  PubMed  Google Scholar 

  23. Thomas GP, Wall SA, Jayamohan J, Magdum SA, Richards PG, Wiberg A, Johnson D (2014) Lessons learned in posterior cranial vault distraction. J Craniofac Surg 25:1721–1727

    Article  PubMed  Google Scholar 

  24. Goldstein JA, Quereshy FA, Cohen AR (1997) Early experience with biodegradable fixation for congenital pediatric craniofacial surgery. J Craniofac Surg 8:110–115

    Article  CAS  PubMed  Google Scholar 

  25. Tharanon W, Sinn DP, Hobar PC, Sklar FH, Salomon J (1998) Surgical outcomes using bioabsorbable plating systems in pediatric craniofacial surgery. J Craniofac Surg 9:441–444

    Article  CAS  PubMed  Google Scholar 

  26. Cutright DE (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29:393–397

    CAS  PubMed  Google Scholar 

  27. Muñoz-Casado MJ, Romance A, Garcia-Recuero J (2009) Bioabsorbable osteofixation devices in craniosynostosis. Clinical experience in 216 cases. Neurocirugia 20:255–261

    Article  PubMed  Google Scholar 

  28. Eppley BL, Morales L, Wood R, Pensler J, Goldstein J, Havlik RJ, Habal M, Losken A, Williams JK, Burstein F (2004) Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: clinical experience in 1883 patients. Plast Reconstr Surg 114:850–856

    Article  PubMed  Google Scholar 

  29. Eppley BL, Sadove MA, Havlik RJ (1997) Resorbable plate fixation in pediatric craniofacial surgery. Plast Reconstr Surg 100:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Hayden Gephart MG, Woodard JI, Arrigo RT, Lorenz HP, Schendel SA, Edwards MS, Guzman R (2013) Using bioabsorbable fixation systems in the treatment of pediatric skull deformities leads to good outcomes and low morbidity. Childs Nerv Syst 29:297–301

    Article  PubMed  Google Scholar 

  31. Wood RJ, Petronio JA, Graupman PC, Shell CD, Gear AJ (2012) New resorbable plate and screw system in pediatric craniofacial surgery. J Craniofac Surg 23:845–849

    Article  PubMed  Google Scholar 

  32. Arnaud E, Renier D (2009) Pediatric craniofacial osteosynthesis and distraction using an ultrasonic-assisted pinned resorbable system: a prospective report with a minimum 30 months’ follow-up. J Craniofac Surg 20:2081–2086

    Article  PubMed  Google Scholar 

  33. Eppley B, Reilly M (1998) Degradation characterstic of 255-261 Muñoz-Casado et al 2009 20: failures. J Cranio-maxilofacial Surg 26:363–372

  34. Eppley BL (1997) Potential for guided bone regeneration and bone graft fixation with resorbable membranes in pediatric craniofacial surgery. J Craniofac Surg 8:127–128

    Article  CAS  PubMed  Google Scholar 

  35. Kumar A, Staffenberg D, Petronio J, Wood R (1997) Bioabsorbable plates and screws in pediatric craniofacial surgery: a review of 22 cases. J Craniofac Surg 8:97–99

    Article  CAS  PubMed  Google Scholar 

  36. Pensler JM (1997) Role of resorbable plates and screws in craniofacial surgery. J Craniofac Surg 8:129–134

    Article  CAS  PubMed  Google Scholar 

  37. Pietrzak WS, Sarver DR, Verstynen ML (1997) Bioabsorbable polymer science for the practicing surgeon. J Craniofac Surg 8:87–91

    Article  CAS  PubMed  Google Scholar 

  38. Savolainen M, Ritvanen A, Tukiainen E, Leikola J (2018) Mechanical analysis of cranial distractor attachment with three different resorbable fixation systems. J Cranio-maxilofacial Surg 46:1355–1360

    Article  CAS  PubMed  Google Scholar 

  39. Maurice SM, Gachiani JM (2014) Posterior cranial vault distraction with resorbable distraction devices. J Craniofac Surg 25:1249–1251

    Article  PubMed  Google Scholar 

  40. Steinbacher DM, Skirpan J, Puchala J, Bartlett SP (2011) Expansion of the posterior cranial vault using distraction osteogenesis. Plast Reconstr Surg 127:792–801

    Article  CAS  PubMed  Google Scholar 

  41. Eckelt U, Nitsche M, Müller A, Pilling E, Pinzer T, Roesner D (2007) Ultrasound aided pin fixation of biodegradable osteosynthetic materials in cranioplasty for infants with craniosynostosis. J Cranio-maxilofacial Surg 35:218–221

    Article  PubMed  Google Scholar 

  42. Nieminen T, Rantala I, Hiidenheimo I, Keränen J, Kainulainen H, Wuolijoki E, Kallela I (2008) Degradative and mechanical properties of a novel resorbable plating system during a 3-year follow-up in vivo and in vitro. J Mater Sci Mater Med 19:1155–1163

    Article  CAS  PubMed  Google Scholar 

  43. Nguyen DC, Woo AS, Farber SJ, Skolnick GB, Yu J, Naidoo SD, Patel KB (2017) Comparison of resorbable plating systems: complications during degradation. J Craniofac Surg 28:88

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pilling E, Meissner H, Jung R, Koch R, Loukota R, Mai R, Reitemeier B, Richter G, Stadlinger B, Stelnicki E (2007) An experimental study of the biomechanical stability of ultrasound-activated pinned (SonicWeld Rx®+ Resorb-X®) and screwed fixed (Resorb-X®) resorbable materials for osteosynthesis in the treatment of simulated craniosynostosis in sheep. Br J Oral Maxillofac Surg 45:451–456

    Article  CAS  PubMed  Google Scholar 

  45. Savolainen MJ, Ritvanen AG, Koljonen VS, Turunen MP, Hulkkonen HH, Vuorinen VH, Leikola JP (2015) Mechanical analysis of ultrasound-activated pins and resorbable screws: two different techniques to fixate osteosynthesis in craniosynostosis surgery. J Craniofac Surg 26:1234–1237

    Article  PubMed  Google Scholar 

  46. Ritvanen A, Savolainen M, Nowinski D, Saiepour D, Paulasto-Kröckel M, Hukki J, Tukiainen E, Leikola J (2017) Force measurements during posterior calvarial vault osteodistraction: A novel measurement method. J Cranio-maxilofacial Surg 45:981–989

    Article  CAS  PubMed  Google Scholar 

  47. Singh R, Singla P, Chaudhary U (2014) Surgical site infections: classification, risk factors, pathogenesis and preventive management. Int J Pharm Res Health Sci 2:203–214

    Google Scholar 

  48. Nejad SB, Allegranzi B, Syed SB, Ellis B, Pittet D (2011) Health-care-associated infection in Africa: a systematic review. Bull World Health Organ 89:757–765

    Article  Google Scholar 

  49. Mulu W, Kibru G, Beyene G, Damtie H (2013) Associated risk factors for postoperative nosocomial infections among patients admitted at Felege Hiwot Referral Hospital, Bahir Dar, Northwest Ethiopia. Clin Med Res 2:140–147

    Article  Google Scholar 

  50. Mengesha RE, Kasa BG-S, Saravanan M, Berhe DF, Wasihun AG (2014) Aerobic bacteria in post surgical wound infections and pattern of their antimicrobial susceptibility in Ayder Teaching and Referral Hospital, Mekelle, Ethiopia. BMC Res Notes 7:1–6

    Article  Google Scholar 

  51. Dencker EE, Bonde A, Troelsen A, Varadarajan KM, Sillesen M (2021) Postoperative complications: an observational study of trends in the United States from 2012 to 2018. BMC Surg 21:393

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karlsen ØE, Borgen P, Bragnes B, Figved W, Grøgaard B, Rydinge J, Sandberg L, Snorrason F, Wangen H, Witsøe E (2020) Rifampin combination therapy in staphylococcal prosthetic joint infections: a randomized controlled trial. J Orthop Surg Res 15:1–9

    Article  Google Scholar 

  53. Seidelman JL, Baker AW, Lewis SS, Advani SD, Smith B, Anderson D, Team DICONS (2022) Surgical site infection trends in community hospitals from 2013 to 2018. Infect Control Hosp Epidemiol 1–6

  54. Legesse Laloto T, Hiko Gemeda D, Abdella SH (2017) Incidence and predictors of surgical site infection in Ethiopia: prospective cohort. BMC Infect Dis 17:1–9

    Article  Google Scholar 

  55. Gagliardi AR, Fenech D, Eskicioglu C, Nathens AB, McLeod R (2009) Factors influencing antibiotic prophylaxis for surgical site infection prevention in general surgery: a review of the literature. Can J Surg 52:481

    PubMed  PubMed Central  Google Scholar 

  56. Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ (1999) The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol 20:725–730

    Article  CAS  PubMed  Google Scholar 

  57. De Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB (2009) Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control 37:387–397

    Article  PubMed  Google Scholar 

  58. Aderinto N, Opanike J, Oladipo E, Olakanmi D, Adepoju O (2022) Accessing neurosurgical services in Africa: efforts, challenges, and recommendation. IJS Global Health 5:e90

    Google Scholar 

  59. Sale D, Amos HD (2021) Assessing the cost burden of pediatric neurosurgery in Kaduna, Nigeria. World Neurosurg 152:e708–e712

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MAF, LS, and KZ wrote the initial manuscript. MAF prepared the tables and figures. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Mohammed A. Fouda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouda, M.A., Seltzer, L.A., Zappi, K. et al. Posterior cranial vault distraction in children with syndromic craniosynostosis: the era of biodegradable materials—a comprehensive review of the literature and proposed novel global application. Childs Nerv Syst 40, 759–768 (2024). https://doi.org/10.1007/s00381-023-06221-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-023-06221-7

Keywords

Navigation